{"title":"SDF2通过GRP78介导的ERAD和铜稳态破坏促进胶质瘤进展。","authors":"Aoxiang Li, Xiaolong Li, Tuo Wang, Jinning Song","doi":"10.3892/ijmm.2025.5595","DOIUrl":null,"url":null,"abstract":"<p><p>Stromal cell‑derived factor 2 (SDF2) is an endoplasmic reticulum chaperone protein crucial for protein folding. Its role in gliomas is poorly understood. The present study investigated SDF2 expression and function in glioma progression. Our data revealed that the expression of SDF2 was upregulated in glioma tissues. In glioma cell lines, SDF2 promoted cell proliferation and migration, whereas the knockdown of SDF2 (Ad‑shSDF2) induced cell death. Further investigations revealed that the copper chelator tetrathiomolybdate (TTM) could reverse the reduction in cell viability caused by Ad‑shSDF2. Upon SDF2 knockdown, the expression of ATP7A and ATP7B was decreased in glioma cells, whereas the expression of glucose‑regulated protein 78 (GRP78) was increased. Moreover, the proteasome inhibitor MG132 and the silencing of GRP78 effectively blocked the Ad‑shSDF2‑mediated decrease in ATP7A and ATP7B expression, as well as the accumulation of dihydrolipoamide S‑acetyltransferase in mitochondria. <i>In vivo</i>, SDF2 promoted subcutaneous tumor growth in nude mice, an effect that could be reversed by overexpression of GRP78. This reversal was accompanied by an increase in the intra‑tumoral copper ion concentration. In gliomas, SDF2 promotes tumor growth by inhibiting the GRP78‑mediated endoplasmic reticulum‑associated degradation pathway, thereby increasing the expression of ATP7A and ATP7B. This results in reduced intracellular accumulation of copper ions, facilitating tumor progression.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"56 4","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339152/pdf/","citationCount":"0","resultStr":"{\"title\":\"SDF2 promotes glioma progression via GRP78‑mediated ERAD and copper homeostasis disruption.\",\"authors\":\"Aoxiang Li, Xiaolong Li, Tuo Wang, Jinning Song\",\"doi\":\"10.3892/ijmm.2025.5595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stromal cell‑derived factor 2 (SDF2) is an endoplasmic reticulum chaperone protein crucial for protein folding. Its role in gliomas is poorly understood. The present study investigated SDF2 expression and function in glioma progression. Our data revealed that the expression of SDF2 was upregulated in glioma tissues. In glioma cell lines, SDF2 promoted cell proliferation and migration, whereas the knockdown of SDF2 (Ad‑shSDF2) induced cell death. Further investigations revealed that the copper chelator tetrathiomolybdate (TTM) could reverse the reduction in cell viability caused by Ad‑shSDF2. Upon SDF2 knockdown, the expression of ATP7A and ATP7B was decreased in glioma cells, whereas the expression of glucose‑regulated protein 78 (GRP78) was increased. Moreover, the proteasome inhibitor MG132 and the silencing of GRP78 effectively blocked the Ad‑shSDF2‑mediated decrease in ATP7A and ATP7B expression, as well as the accumulation of dihydrolipoamide S‑acetyltransferase in mitochondria. <i>In vivo</i>, SDF2 promoted subcutaneous tumor growth in nude mice, an effect that could be reversed by overexpression of GRP78. This reversal was accompanied by an increase in the intra‑tumoral copper ion concentration. In gliomas, SDF2 promotes tumor growth by inhibiting the GRP78‑mediated endoplasmic reticulum‑associated degradation pathway, thereby increasing the expression of ATP7A and ATP7B. This results in reduced intracellular accumulation of copper ions, facilitating tumor progression.</p>\",\"PeriodicalId\":14086,\"journal\":{\"name\":\"International journal of molecular medicine\",\"volume\":\"56 4\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339152/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of molecular medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/ijmm.2025.5595\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2025.5595","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
SDF2 promotes glioma progression via GRP78‑mediated ERAD and copper homeostasis disruption.
Stromal cell‑derived factor 2 (SDF2) is an endoplasmic reticulum chaperone protein crucial for protein folding. Its role in gliomas is poorly understood. The present study investigated SDF2 expression and function in glioma progression. Our data revealed that the expression of SDF2 was upregulated in glioma tissues. In glioma cell lines, SDF2 promoted cell proliferation and migration, whereas the knockdown of SDF2 (Ad‑shSDF2) induced cell death. Further investigations revealed that the copper chelator tetrathiomolybdate (TTM) could reverse the reduction in cell viability caused by Ad‑shSDF2. Upon SDF2 knockdown, the expression of ATP7A and ATP7B was decreased in glioma cells, whereas the expression of glucose‑regulated protein 78 (GRP78) was increased. Moreover, the proteasome inhibitor MG132 and the silencing of GRP78 effectively blocked the Ad‑shSDF2‑mediated decrease in ATP7A and ATP7B expression, as well as the accumulation of dihydrolipoamide S‑acetyltransferase in mitochondria. In vivo, SDF2 promoted subcutaneous tumor growth in nude mice, an effect that could be reversed by overexpression of GRP78. This reversal was accompanied by an increase in the intra‑tumoral copper ion concentration. In gliomas, SDF2 promotes tumor growth by inhibiting the GRP78‑mediated endoplasmic reticulum‑associated degradation pathway, thereby increasing the expression of ATP7A and ATP7B. This results in reduced intracellular accumulation of copper ions, facilitating tumor progression.
期刊介绍:
The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality.
The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research.
All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.