CaAl2S4/InGaSe2范德华异质结构的应变可调谐带对准和光电性质

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Weiqi Fu, Yicheng Wang, Xing Xu, Yipeng Zhao, Liang Ma, Shiqing Tang
{"title":"CaAl2S4/InGaSe2范德华异质结构的应变可调谐带对准和光电性质","authors":"Weiqi Fu,&nbsp;Yicheng Wang,&nbsp;Xing Xu,&nbsp;Yipeng Zhao,&nbsp;Liang Ma,&nbsp;Shiqing Tang","doi":"10.1002/cphc.202500281","DOIUrl":null,"url":null,"abstract":"<p>Hexagonal α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub> and Janus α<sub>1</sub>-InGaSe<sub>2</sub>, featuring unique physical and chemical attributes, stand out as exceptional contenders for optoelectronic implementations. However, on account of weak absorption of visible and UV light, α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub> faces limitations in optoelectronic device applications. Constructing a heterojunction with α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub> and α<sub>1</sub>-InGaSe<sub>2</sub> can significantly enhance photon absorption in both the visible and UV domains. This research employs first-principles simulations to scrutinize the optical and electrical properties of α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub>, α<sub>1</sub>-InGaSe<sub>2</sub>, and the heterojunctions formed by these two materials. The output of the calculations shows that CaAl<sub>2</sub>S<sub>4</sub>/InGaSe<sub>2</sub> heterojunction demonstrates a remarkable enhancement with respect to light collection efficiency across the visible and UV span. The CaAl<sub>2</sub>S<sub>4</sub>/InGaSe<sub>2</sub> heterojunctions with different stacking structures exhibit type-I and type-II alignment modes, respectively. Furthermore, the bandgap value and type of heterojunctions can be effectively controlled by modulating the interlayer spacing and applying biaxial strain, resulting in a variety of band alignments and light absorption properties. These findings provide new material options and technological pathways for developing high-efficiency photovoltaic cells, photoresponsive devices, solid-state lighting elements, and novel photocatalytic and integrated optoelectronic devices.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":"26 19","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain-Tunable Band Alignment and Photoelectric Properties of CaAl2S4/InGaSe2 van der Waals Heterostructure\",\"authors\":\"Weiqi Fu,&nbsp;Yicheng Wang,&nbsp;Xing Xu,&nbsp;Yipeng Zhao,&nbsp;Liang Ma,&nbsp;Shiqing Tang\",\"doi\":\"10.1002/cphc.202500281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hexagonal α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub> and Janus α<sub>1</sub>-InGaSe<sub>2</sub>, featuring unique physical and chemical attributes, stand out as exceptional contenders for optoelectronic implementations. However, on account of weak absorption of visible and UV light, α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub> faces limitations in optoelectronic device applications. Constructing a heterojunction with α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub> and α<sub>1</sub>-InGaSe<sub>2</sub> can significantly enhance photon absorption in both the visible and UV domains. This research employs first-principles simulations to scrutinize the optical and electrical properties of α<sub>1</sub>-CaAl<sub>2</sub>S<sub>4</sub>, α<sub>1</sub>-InGaSe<sub>2</sub>, and the heterojunctions formed by these two materials. The output of the calculations shows that CaAl<sub>2</sub>S<sub>4</sub>/InGaSe<sub>2</sub> heterojunction demonstrates a remarkable enhancement with respect to light collection efficiency across the visible and UV span. The CaAl<sub>2</sub>S<sub>4</sub>/InGaSe<sub>2</sub> heterojunctions with different stacking structures exhibit type-I and type-II alignment modes, respectively. Furthermore, the bandgap value and type of heterojunctions can be effectively controlled by modulating the interlayer spacing and applying biaxial strain, resulting in a variety of band alignments and light absorption properties. These findings provide new material options and technological pathways for developing high-efficiency photovoltaic cells, photoresponsive devices, solid-state lighting elements, and novel photocatalytic and integrated optoelectronic devices.</p>\",\"PeriodicalId\":9819,\"journal\":{\"name\":\"Chemphyschem\",\"volume\":\"26 19\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemphyschem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500281\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cphc.202500281","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

六方α1-CaAl2S4和Janus α1-InGaSe2具有独特的物理和化学属性,是光电实现的杰出竞争者。然而,由于α1-CaAl2S4对可见光和紫外光的吸收较弱,在光电器件中的应用受到限制。与α1-CaAl2S4和α1-InGaSe2构建异质结可以显著增强可见光和紫外域的光子吸收。本研究采用第一性原理模拟研究了α1-CaAl2S4和α1-InGaSe2的光学和电学性质,以及这两种材料形成的异质结。计算结果表明,CaAl2S4/InGaSe2异质结在可见光和紫外波段的光收集效率方面有显著提高。不同堆叠结构的CaAl2S4/InGaSe2异质结分别表现为i型和ii型取向模式。此外,通过调节层间距和施加双轴应变,可以有效地控制带隙值和异质结的类型,从而产生各种能带对准和光吸收特性。这些发现为开发高效光伏电池、光响应器件、固态照明元件以及新型光催化和集成光电器件提供了新的材料选择和技术途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain-Tunable Band Alignment and Photoelectric Properties of CaAl2S4/InGaSe2 van der Waals Heterostructure

Strain-Tunable Band Alignment and Photoelectric Properties of CaAl2S4/InGaSe2 van der Waals Heterostructure

Hexagonal α1-CaAl2S4 and Janus α1-InGaSe2, featuring unique physical and chemical attributes, stand out as exceptional contenders for optoelectronic implementations. However, on account of weak absorption of visible and UV light, α1-CaAl2S4 faces limitations in optoelectronic device applications. Constructing a heterojunction with α1-CaAl2S4 and α1-InGaSe2 can significantly enhance photon absorption in both the visible and UV domains. This research employs first-principles simulations to scrutinize the optical and electrical properties of α1-CaAl2S4, α1-InGaSe2, and the heterojunctions formed by these two materials. The output of the calculations shows that CaAl2S4/InGaSe2 heterojunction demonstrates a remarkable enhancement with respect to light collection efficiency across the visible and UV span. The CaAl2S4/InGaSe2 heterojunctions with different stacking structures exhibit type-I and type-II alignment modes, respectively. Furthermore, the bandgap value and type of heterojunctions can be effectively controlled by modulating the interlayer spacing and applying biaxial strain, resulting in a variety of band alignments and light absorption properties. These findings provide new material options and technological pathways for developing high-efficiency photovoltaic cells, photoresponsive devices, solid-state lighting elements, and novel photocatalytic and integrated optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信