Carmen Picon, Robertas Aleksynas, Marcelina Wojewska, Francesco de Virgiliis, Doron Merkler, Richard Reynolds
{"title":"内体分选复合体III的失调与进行性多发性硬化症的神经变性有关。","authors":"Carmen Picon, Robertas Aleksynas, Marcelina Wojewska, Francesco de Virgiliis, Doron Merkler, Richard Reynolds","doi":"10.1111/bpa.70034","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is a chronic neuroinflammatory disease that progresses to a stage marked by irreversible neurological decline and widespread neurodegeneration. Necroptosis, a regulated form of cell death primarily triggered by tumor necrosis factor (TNF), has been implicated in neuronal loss in progressive MS. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery, essential for plasma membrane repair and vesicle trafficking, is known to counteract necroptosis in non-neural cells. In this study, we investigated whether ESCRT dysfunction contributes to neurodegeneration in the MS cortex. We identified a significant dysregulation of ESCRT-III complex components, particularly VPS4B and CHMP2A, in neurons of MS cortical grey matter. This dysregulation correlated with reduced neuronal density and increased meningeal inflammation. Notably, both demyelinated and normal-appearing grey matter showed decreased VPS4B, while CHMP2A loss was more restricted to areas of demyelination. These findings suggest that impaired ESCRT-III function may increase neuronal vulnerability to necroptosis and contribute to disease progression in MS. Our results highlight a novel pathway linking neuroinflammation, ESCRT dysfunction, and neuronal death, with potential therapeutic implications for neuroprotection in progressive MS.</p>","PeriodicalId":9290,"journal":{"name":"Brain Pathology","volume":" ","pages":"e70034"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dysregulation of the endosomal sorting complex III is linked to neurodegeneration in progressive multiple sclerosis.\",\"authors\":\"Carmen Picon, Robertas Aleksynas, Marcelina Wojewska, Francesco de Virgiliis, Doron Merkler, Richard Reynolds\",\"doi\":\"10.1111/bpa.70034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is a chronic neuroinflammatory disease that progresses to a stage marked by irreversible neurological decline and widespread neurodegeneration. Necroptosis, a regulated form of cell death primarily triggered by tumor necrosis factor (TNF), has been implicated in neuronal loss in progressive MS. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery, essential for plasma membrane repair and vesicle trafficking, is known to counteract necroptosis in non-neural cells. In this study, we investigated whether ESCRT dysfunction contributes to neurodegeneration in the MS cortex. We identified a significant dysregulation of ESCRT-III complex components, particularly VPS4B and CHMP2A, in neurons of MS cortical grey matter. This dysregulation correlated with reduced neuronal density and increased meningeal inflammation. Notably, both demyelinated and normal-appearing grey matter showed decreased VPS4B, while CHMP2A loss was more restricted to areas of demyelination. These findings suggest that impaired ESCRT-III function may increase neuronal vulnerability to necroptosis and contribute to disease progression in MS. Our results highlight a novel pathway linking neuroinflammation, ESCRT dysfunction, and neuronal death, with potential therapeutic implications for neuroprotection in progressive MS.</p>\",\"PeriodicalId\":9290,\"journal\":{\"name\":\"Brain Pathology\",\"volume\":\" \",\"pages\":\"e70034\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bpa.70034\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bpa.70034","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Dysregulation of the endosomal sorting complex III is linked to neurodegeneration in progressive multiple sclerosis.
Multiple sclerosis (MS) is a chronic neuroinflammatory disease that progresses to a stage marked by irreversible neurological decline and widespread neurodegeneration. Necroptosis, a regulated form of cell death primarily triggered by tumor necrosis factor (TNF), has been implicated in neuronal loss in progressive MS. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery, essential for plasma membrane repair and vesicle trafficking, is known to counteract necroptosis in non-neural cells. In this study, we investigated whether ESCRT dysfunction contributes to neurodegeneration in the MS cortex. We identified a significant dysregulation of ESCRT-III complex components, particularly VPS4B and CHMP2A, in neurons of MS cortical grey matter. This dysregulation correlated with reduced neuronal density and increased meningeal inflammation. Notably, both demyelinated and normal-appearing grey matter showed decreased VPS4B, while CHMP2A loss was more restricted to areas of demyelination. These findings suggest that impaired ESCRT-III function may increase neuronal vulnerability to necroptosis and contribute to disease progression in MS. Our results highlight a novel pathway linking neuroinflammation, ESCRT dysfunction, and neuronal death, with potential therapeutic implications for neuroprotection in progressive MS.
期刊介绍:
Brain Pathology is the journal of choice for biomedical scientists investigating diseases of the nervous system. The official journal of the International Society of Neuropathology, Brain Pathology is a peer-reviewed quarterly publication that includes original research, review articles and symposia focuses on the pathogenesis of neurological disease.