Carolyn R Morris, Ravishankar Chandrasekaran, Isabella M Butzirus, Nirav Daphtary, Minara Aliyeva, Allison M Manuel, William G Tharp, Jason Bates, Vikas Anathy, Matthew E Poynter, Jianmin Duan, Geneviève Gaucher, Glenn D Crater, Anne E Dixon
{"title":"大麻素受体1逆激动剂在肥胖哮喘小鼠模型中诱导体重减轻并降低气道高反应性。","authors":"Carolyn R Morris, Ravishankar Chandrasekaran, Isabella M Butzirus, Nirav Daphtary, Minara Aliyeva, Allison M Manuel, William G Tharp, Jason Bates, Vikas Anathy, Matthew E Poynter, Jianmin Duan, Geneviève Gaucher, Glenn D Crater, Anne E Dixon","doi":"10.1152/ajplung.00049.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Most people with severe asthma have obesity. Metabolic dysfunction, often associated with obesity, is particularly associated with severe asthma. Mechanisms linking metabolic dysfunction with asthma, and whether improving metabolic function can affect asthma, are not known. The endocannabinoid system plays a significant role in metabolism; inhibition of cannabinoid receptor 1 (CB<sub>1</sub>R) induces weight loss and improves serum lipid profiles. We used a CB<sub>1</sub>R inverse agonist, INV-202, in a mouse model of obese asthma and investigated changes in weight, inflammation, airway reactivity, and surfactant lipids. Mice were fed low or high fat diets (LFD, HFD), and house dust mite extract (HDM) was delivered intranasally to induce allergic airway inflammation. Mice received INV-202 by oral gavage. Airway hyperresponsiveness was measured by flexivent and lung tissue cytokines were measured by ELISA. Leukocytes and lipids in the bronchoalveolar lavage fluid (BALF) were analyzed by flow cytometry and mass spectroscopy, respectively. LFD and HFD mice lost an average of 11% and 27% of their body weight, respectively. LFD mice had a 33% decrease in CCL20 in lung tissue and a 55% decrease in neutrophils in BALF. LFD and HFD mice had improvements in airway hyperresponsiveness, particularly as measured by reduced elastance. Phosphatidylglycerol in BALF increased with INV-202, which significantly correlated with compliance in LFD mice. This study supports a significant contribution of metabolic factors related to the endocannabinoid system in lung compliance and airway reactivity, in part through effects on surfactant lipid composition, and demonstrates the potential of CB<sub>1</sub>R inverse agonists to treat obese asthma.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cannabinoid receptor 1 inverse agonist induces weight loss and reduces airway hyperresponsiveness in a mouse model of obese asthma.\",\"authors\":\"Carolyn R Morris, Ravishankar Chandrasekaran, Isabella M Butzirus, Nirav Daphtary, Minara Aliyeva, Allison M Manuel, William G Tharp, Jason Bates, Vikas Anathy, Matthew E Poynter, Jianmin Duan, Geneviève Gaucher, Glenn D Crater, Anne E Dixon\",\"doi\":\"10.1152/ajplung.00049.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most people with severe asthma have obesity. Metabolic dysfunction, often associated with obesity, is particularly associated with severe asthma. Mechanisms linking metabolic dysfunction with asthma, and whether improving metabolic function can affect asthma, are not known. The endocannabinoid system plays a significant role in metabolism; inhibition of cannabinoid receptor 1 (CB<sub>1</sub>R) induces weight loss and improves serum lipid profiles. We used a CB<sub>1</sub>R inverse agonist, INV-202, in a mouse model of obese asthma and investigated changes in weight, inflammation, airway reactivity, and surfactant lipids. Mice were fed low or high fat diets (LFD, HFD), and house dust mite extract (HDM) was delivered intranasally to induce allergic airway inflammation. Mice received INV-202 by oral gavage. Airway hyperresponsiveness was measured by flexivent and lung tissue cytokines were measured by ELISA. Leukocytes and lipids in the bronchoalveolar lavage fluid (BALF) were analyzed by flow cytometry and mass spectroscopy, respectively. LFD and HFD mice lost an average of 11% and 27% of their body weight, respectively. LFD mice had a 33% decrease in CCL20 in lung tissue and a 55% decrease in neutrophils in BALF. LFD and HFD mice had improvements in airway hyperresponsiveness, particularly as measured by reduced elastance. Phosphatidylglycerol in BALF increased with INV-202, which significantly correlated with compliance in LFD mice. This study supports a significant contribution of metabolic factors related to the endocannabinoid system in lung compliance and airway reactivity, in part through effects on surfactant lipid composition, and demonstrates the potential of CB<sub>1</sub>R inverse agonists to treat obese asthma.</p>\",\"PeriodicalId\":7593,\"journal\":{\"name\":\"American journal of physiology. Lung cellular and molecular physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Lung cellular and molecular physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajplung.00049.2025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00049.2025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
A cannabinoid receptor 1 inverse agonist induces weight loss and reduces airway hyperresponsiveness in a mouse model of obese asthma.
Most people with severe asthma have obesity. Metabolic dysfunction, often associated with obesity, is particularly associated with severe asthma. Mechanisms linking metabolic dysfunction with asthma, and whether improving metabolic function can affect asthma, are not known. The endocannabinoid system plays a significant role in metabolism; inhibition of cannabinoid receptor 1 (CB1R) induces weight loss and improves serum lipid profiles. We used a CB1R inverse agonist, INV-202, in a mouse model of obese asthma and investigated changes in weight, inflammation, airway reactivity, and surfactant lipids. Mice were fed low or high fat diets (LFD, HFD), and house dust mite extract (HDM) was delivered intranasally to induce allergic airway inflammation. Mice received INV-202 by oral gavage. Airway hyperresponsiveness was measured by flexivent and lung tissue cytokines were measured by ELISA. Leukocytes and lipids in the bronchoalveolar lavage fluid (BALF) were analyzed by flow cytometry and mass spectroscopy, respectively. LFD and HFD mice lost an average of 11% and 27% of their body weight, respectively. LFD mice had a 33% decrease in CCL20 in lung tissue and a 55% decrease in neutrophils in BALF. LFD and HFD mice had improvements in airway hyperresponsiveness, particularly as measured by reduced elastance. Phosphatidylglycerol in BALF increased with INV-202, which significantly correlated with compliance in LFD mice. This study supports a significant contribution of metabolic factors related to the endocannabinoid system in lung compliance and airway reactivity, in part through effects on surfactant lipid composition, and demonstrates the potential of CB1R inverse agonists to treat obese asthma.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.