镍中氧化还原诱导的微观结构和相动力学:来自原位同步加速器x射线衍射的见解。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shyam Bharatkumar Patel, Jianyu Wang, Xiaobo Chen, Yupeng Wu, Raul Acevedo-Esteves, Kenneth Evans-Lutterodt, Randall L. Headrick and Guangwen Zhou*, 
{"title":"镍中氧化还原诱导的微观结构和相动力学:来自原位同步加速器x射线衍射的见解。","authors":"Shyam Bharatkumar Patel,&nbsp;Jianyu Wang,&nbsp;Xiaobo Chen,&nbsp;Yupeng Wu,&nbsp;Raul Acevedo-Esteves,&nbsp;Kenneth Evans-Lutterodt,&nbsp;Randall L. Headrick and Guangwen Zhou*,&nbsp;","doi":"10.1021/jacs.5c06066","DOIUrl":null,"url":null,"abstract":"<p >Using in situ synchrotron X-ray diffraction, we interrogate the microstructural and phase evolution of polycrystalline nickel (Ni) during redox cycling in O<sub>2</sub>, H<sub>2</sub>, and H<sub>2</sub>O environments. Oxidation in O<sub>2</sub> promotes strong (111) texturing in both the NiO overlayer and the underlying Ni substrate. However, this crystallographic alignment is lost following reduction in H<sub>2</sub> and subsequent reoxidation, demonstrating irreversible microstructural changes. H<sub>2</sub> exposure leads to proton dissolution into the Ni lattice, triggering a localized phase transition from face-centered cubic (FCC) to hexagonal close-packed (HCP) Ni in hydrogen-saturated regions. In H<sub>2</sub>O-containing atmospheres, dissociative H<sub>2</sub>O adsorption produces protons that permeate the NiO layer, forming γ-NiOOH within the NiO lattice and HCP Ni beneath the NiO overlayer as protons accumulate. Kinetic analysis via the Johnson-Mehl-Avrami–Kolmogorov model uncovers distinct growth mechanisms: preoxidized Ni surfaces follow one-dimensional (1D) kinetics for NiO, γ-NiOOH, and HCP growth, whereas pristine Ni exhibits three-dimensional (3D) kinetics due to island-like nucleation and growth of NiO. These results highlight the critical interplay between H<sub>2</sub>O dissociation, hydrogen permeation, and redox-driven phase transformations, with practical implications in engineering nickel-based catalysts and hydrogen storage systems through controlled microstructural and phase evolution.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 31","pages":"27651–27663"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redox-Induced Microstructure and Phase Dynamics in Nickel: Insights from In Situ Synchrotron X-ray Diffraction\",\"authors\":\"Shyam Bharatkumar Patel,&nbsp;Jianyu Wang,&nbsp;Xiaobo Chen,&nbsp;Yupeng Wu,&nbsp;Raul Acevedo-Esteves,&nbsp;Kenneth Evans-Lutterodt,&nbsp;Randall L. Headrick and Guangwen Zhou*,&nbsp;\",\"doi\":\"10.1021/jacs.5c06066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Using in situ synchrotron X-ray diffraction, we interrogate the microstructural and phase evolution of polycrystalline nickel (Ni) during redox cycling in O<sub>2</sub>, H<sub>2</sub>, and H<sub>2</sub>O environments. Oxidation in O<sub>2</sub> promotes strong (111) texturing in both the NiO overlayer and the underlying Ni substrate. However, this crystallographic alignment is lost following reduction in H<sub>2</sub> and subsequent reoxidation, demonstrating irreversible microstructural changes. H<sub>2</sub> exposure leads to proton dissolution into the Ni lattice, triggering a localized phase transition from face-centered cubic (FCC) to hexagonal close-packed (HCP) Ni in hydrogen-saturated regions. In H<sub>2</sub>O-containing atmospheres, dissociative H<sub>2</sub>O adsorption produces protons that permeate the NiO layer, forming γ-NiOOH within the NiO lattice and HCP Ni beneath the NiO overlayer as protons accumulate. Kinetic analysis via the Johnson-Mehl-Avrami–Kolmogorov model uncovers distinct growth mechanisms: preoxidized Ni surfaces follow one-dimensional (1D) kinetics for NiO, γ-NiOOH, and HCP growth, whereas pristine Ni exhibits three-dimensional (3D) kinetics due to island-like nucleation and growth of NiO. These results highlight the critical interplay between H<sub>2</sub>O dissociation, hydrogen permeation, and redox-driven phase transformations, with practical implications in engineering nickel-based catalysts and hydrogen storage systems through controlled microstructural and phase evolution.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 31\",\"pages\":\"27651–27663\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c06066\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c06066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用原位同步加速器x射线衍射,我们研究了多晶镍(Ni)在O2、H2和H2O环境下氧化还原循环过程中的微观结构和相演化。O2氧化促进了NiO涂层和底层Ni衬底的强(111)织构。然而,随着H2的还原和随后的再氧化,这种晶体排列丢失,显示出不可逆的微观结构变化。H2暴露导致质子溶解到Ni晶格中,在氢饱和区触发从面心立方(FCC)到六方密堆积(HCP) Ni的局部相变。在含H2O的大气中,解离的H2O吸附产生质子,这些质子渗透到NiO层中,在NiO晶格内形成γ-NiOOH,随着质子的积累在NiO层下形成HCP Ni。通过Johnson-Mehl-Avrami-Kolmogorov模型进行的动力学分析揭示了不同的生长机制:预氧化镍表面NiO、γ-NiOOH和HCP的生长遵循一维(1D)动力学,而原始镍表面由于NiO的岛状成核和生长而呈现三维(3D)动力学。这些结果强调了水解离、氢渗透和氧化还原驱动相变之间的关键相互作用,通过控制微观结构和相演化,在工程镍基催化剂和储氢系统中具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Redox-Induced Microstructure and Phase Dynamics in Nickel: Insights from In Situ Synchrotron X-ray Diffraction

Redox-Induced Microstructure and Phase Dynamics in Nickel: Insights from In Situ Synchrotron X-ray Diffraction

Using in situ synchrotron X-ray diffraction, we interrogate the microstructural and phase evolution of polycrystalline nickel (Ni) during redox cycling in O2, H2, and H2O environments. Oxidation in O2 promotes strong (111) texturing in both the NiO overlayer and the underlying Ni substrate. However, this crystallographic alignment is lost following reduction in H2 and subsequent reoxidation, demonstrating irreversible microstructural changes. H2 exposure leads to proton dissolution into the Ni lattice, triggering a localized phase transition from face-centered cubic (FCC) to hexagonal close-packed (HCP) Ni in hydrogen-saturated regions. In H2O-containing atmospheres, dissociative H2O adsorption produces protons that permeate the NiO layer, forming γ-NiOOH within the NiO lattice and HCP Ni beneath the NiO overlayer as protons accumulate. Kinetic analysis via the Johnson-Mehl-Avrami–Kolmogorov model uncovers distinct growth mechanisms: preoxidized Ni surfaces follow one-dimensional (1D) kinetics for NiO, γ-NiOOH, and HCP growth, whereas pristine Ni exhibits three-dimensional (3D) kinetics due to island-like nucleation and growth of NiO. These results highlight the critical interplay between H2O dissociation, hydrogen permeation, and redox-driven phase transformations, with practical implications in engineering nickel-based catalysts and hydrogen storage systems through controlled microstructural and phase evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信