Suyong Park, Seongmin Kim, Sungjoon Kim, Kyungchul Park, Donghyun Ryu, Sungjun Kim
{"title":"用于储层计算的InGaZnO光电突触晶体管及基于lstm的预测模型","authors":"Suyong Park, Seongmin Kim, Sungjoon Kim, Kyungchul Park, Donghyun Ryu, Sungjun Kim","doi":"10.1002/adom.202500634","DOIUrl":null,"url":null,"abstract":"<p>This study presents a reservoir computing (RC) system utilizing an indium gallium zinc oxide (IGZO)-based optoelectronic synaptic transistor (OST) for neuromorphic computing applications. The proposed IGZO-based OST harnesses the effects of persistent photoconductivity in the IGZO channel and charge trapping at the IGZO/tantalum oxide interface to emulate the short-term synaptic behavior. By optical stimuli, the device achieves dynamic reservoir states with nonlinear and time-dependent characteristics, enhancing its capability for temporal data processing. Moreover, the system effectively performs pattern recognition tasks, attaining high classification accuracies of 95.75% and 85.02% on the MNIST and Fashion MNIST datasets, respectively. Additionally, the device replicates nociceptive behaviors, such as allodynia and hyperalgesia, under optical stimulation, showcasing its potential for bio-inspired sensory applications. An LSTM-based prediction model is developed using Jena climate data, incorporating a method that mimics synaptic weight variation to assess its impact on performance. This approach demonstrates the feasibility of hardware-friendly neural networks via biologically inspired weight adjustments, outperforming conventional forecasting models. Notably, the model achieves a normalized root mean square error (NRMSE) as low as 0.0145, highlighting its high prediction accuracy.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 21","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"InGaZnO Optoelectronic Synaptic Transistor for Reservoir Computing and LSTM-Based Prediction Model\",\"authors\":\"Suyong Park, Seongmin Kim, Sungjoon Kim, Kyungchul Park, Donghyun Ryu, Sungjun Kim\",\"doi\":\"10.1002/adom.202500634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study presents a reservoir computing (RC) system utilizing an indium gallium zinc oxide (IGZO)-based optoelectronic synaptic transistor (OST) for neuromorphic computing applications. The proposed IGZO-based OST harnesses the effects of persistent photoconductivity in the IGZO channel and charge trapping at the IGZO/tantalum oxide interface to emulate the short-term synaptic behavior. By optical stimuli, the device achieves dynamic reservoir states with nonlinear and time-dependent characteristics, enhancing its capability for temporal data processing. Moreover, the system effectively performs pattern recognition tasks, attaining high classification accuracies of 95.75% and 85.02% on the MNIST and Fashion MNIST datasets, respectively. Additionally, the device replicates nociceptive behaviors, such as allodynia and hyperalgesia, under optical stimulation, showcasing its potential for bio-inspired sensory applications. An LSTM-based prediction model is developed using Jena climate data, incorporating a method that mimics synaptic weight variation to assess its impact on performance. This approach demonstrates the feasibility of hardware-friendly neural networks via biologically inspired weight adjustments, outperforming conventional forecasting models. Notably, the model achieves a normalized root mean square error (NRMSE) as low as 0.0145, highlighting its high prediction accuracy.</p>\",\"PeriodicalId\":116,\"journal\":{\"name\":\"Advanced Optical Materials\",\"volume\":\"13 21\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Optical Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500634\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500634","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
InGaZnO Optoelectronic Synaptic Transistor for Reservoir Computing and LSTM-Based Prediction Model
This study presents a reservoir computing (RC) system utilizing an indium gallium zinc oxide (IGZO)-based optoelectronic synaptic transistor (OST) for neuromorphic computing applications. The proposed IGZO-based OST harnesses the effects of persistent photoconductivity in the IGZO channel and charge trapping at the IGZO/tantalum oxide interface to emulate the short-term synaptic behavior. By optical stimuli, the device achieves dynamic reservoir states with nonlinear and time-dependent characteristics, enhancing its capability for temporal data processing. Moreover, the system effectively performs pattern recognition tasks, attaining high classification accuracies of 95.75% and 85.02% on the MNIST and Fashion MNIST datasets, respectively. Additionally, the device replicates nociceptive behaviors, such as allodynia and hyperalgesia, under optical stimulation, showcasing its potential for bio-inspired sensory applications. An LSTM-based prediction model is developed using Jena climate data, incorporating a method that mimics synaptic weight variation to assess its impact on performance. This approach demonstrates the feasibility of hardware-friendly neural networks via biologically inspired weight adjustments, outperforming conventional forecasting models. Notably, the model achieves a normalized root mean square error (NRMSE) as low as 0.0145, highlighting its high prediction accuracy.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.