一个解释公司估值的可解释机器学习框架

Luís Baltazar Blanquet , Miguel Alves Pereira , Stefan Petrov
{"title":"一个解释公司估值的可解释机器学习框架","authors":"Luís Baltazar Blanquet ,&nbsp;Miguel Alves Pereira ,&nbsp;Stefan Petrov","doi":"10.1016/j.dajour.2025.100611","DOIUrl":null,"url":null,"abstract":"<div><div>Valuing private enterprises — particularly early-stage firms — remains a significant challenge due to high variability and frequent overvaluation, often exceeding 50%. These inaccuracies undermine trust in the venture capital (VC) market and complicate investment decision-making. To address these issues, we present machine learning (ML) frameworks that enhance valuation accuracy. Our study introduces a novel ML approach that outperforms traditional models, achieving a Mean Absolute Percentage Error of 34.90%, significantly improving upon industry benchmarks. The Total Cost of Ownership is identified as the most critical valuation methodology, with financial metrics becoming increasingly influential as firm value rises. Our findings highlight the potential of advanced data mining techniques to deliver more reliable, comprehensive valuations within the VC landscape. Future research should explore expanding this analysis to emerging markets and incorporating primary data for deeper insights.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"16 ","pages":"Article 100611"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpretable machine learning framework for explaining company valuation\",\"authors\":\"Luís Baltazar Blanquet ,&nbsp;Miguel Alves Pereira ,&nbsp;Stefan Petrov\",\"doi\":\"10.1016/j.dajour.2025.100611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Valuing private enterprises — particularly early-stage firms — remains a significant challenge due to high variability and frequent overvaluation, often exceeding 50%. These inaccuracies undermine trust in the venture capital (VC) market and complicate investment decision-making. To address these issues, we present machine learning (ML) frameworks that enhance valuation accuracy. Our study introduces a novel ML approach that outperforms traditional models, achieving a Mean Absolute Percentage Error of 34.90%, significantly improving upon industry benchmarks. The Total Cost of Ownership is identified as the most critical valuation methodology, with financial metrics becoming increasingly influential as firm value rises. Our findings highlight the potential of advanced data mining techniques to deliver more reliable, comprehensive valuations within the VC landscape. Future research should explore expanding this analysis to emerging markets and incorporating primary data for deeper insights.</div></div>\",\"PeriodicalId\":100357,\"journal\":{\"name\":\"Decision Analytics Journal\",\"volume\":\"16 \",\"pages\":\"Article 100611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Analytics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772662225000670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662225000670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对私营企业(特别是早期公司)进行估值仍然是一项重大挑战,因为它们具有高度可变性和经常被高估,通常超过50%。这些不准确损害了风险投资市场的信任,使投资决策复杂化。为了解决这些问题,我们提出了提高估值准确性的机器学习(ML)框架。我们的研究引入了一种新的机器学习方法,该方法优于传统模型,实现了34.90%的平均绝对百分比误差,显着提高了行业基准。总拥有成本被认为是最关键的评估方法,随着公司价值的上升,财务指标变得越来越有影响力。我们的研究结果强调了先进的数据挖掘技术在风险投资领域提供更可靠、更全面估值的潜力。未来的研究应该探索将这种分析扩展到新兴市场,并结合原始数据以获得更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interpretable machine learning framework for explaining company valuation
Valuing private enterprises — particularly early-stage firms — remains a significant challenge due to high variability and frequent overvaluation, often exceeding 50%. These inaccuracies undermine trust in the venture capital (VC) market and complicate investment decision-making. To address these issues, we present machine learning (ML) frameworks that enhance valuation accuracy. Our study introduces a novel ML approach that outperforms traditional models, achieving a Mean Absolute Percentage Error of 34.90%, significantly improving upon industry benchmarks. The Total Cost of Ownership is identified as the most critical valuation methodology, with financial metrics becoming increasingly influential as firm value rises. Our findings highlight the potential of advanced data mining techniques to deliver more reliable, comprehensive valuations within the VC landscape. Future research should explore expanding this analysis to emerging markets and incorporating primary data for deeper insights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信