假新闻检测联合学习框架

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Muhammad Abdullah , Zan Hongying , Arifa Javed , Orken Mamyrbayev , Fabio Caraffini , Hassan Eshkiki
{"title":"假新闻检测联合学习框架","authors":"Muhammad Abdullah ,&nbsp;Zan Hongying ,&nbsp;Arifa Javed ,&nbsp;Orken Mamyrbayev ,&nbsp;Fabio Caraffini ,&nbsp;Hassan Eshkiki","doi":"10.1016/j.displa.2025.103154","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a joint learning framework for fake news detection, introducing an Enhanced BERT model that integrates named entity recognition, relational feature classification, and Stance Detection through a unified multi-task approach. The model incorporates task-specific masking and hierarchical attention mechanisms to capture both fine-grained and high-level contextual relationships across headlines and body text. Cross-task consistency losses are applied to ensure coherence and alignment with external factual knowledge. We analyse the average distance from components to the centroid of a news sample to differentiate genuine information from falsehoods in large-scale text data effectively. Experiments on two FakeNewsNet datasets show that our framework outperforms state-of-the-art models, with accuracy improvements of 2.17% and 1.03%. These results indicate the potential for applications needing detailed text processing, like automatic summarisation and misinformation detection.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"90 ","pages":"Article 103154"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint learning framework for fake news detection\",\"authors\":\"Muhammad Abdullah ,&nbsp;Zan Hongying ,&nbsp;Arifa Javed ,&nbsp;Orken Mamyrbayev ,&nbsp;Fabio Caraffini ,&nbsp;Hassan Eshkiki\",\"doi\":\"10.1016/j.displa.2025.103154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a joint learning framework for fake news detection, introducing an Enhanced BERT model that integrates named entity recognition, relational feature classification, and Stance Detection through a unified multi-task approach. The model incorporates task-specific masking and hierarchical attention mechanisms to capture both fine-grained and high-level contextual relationships across headlines and body text. Cross-task consistency losses are applied to ensure coherence and alignment with external factual knowledge. We analyse the average distance from components to the centroid of a news sample to differentiate genuine information from falsehoods in large-scale text data effectively. Experiments on two FakeNewsNet datasets show that our framework outperforms state-of-the-art models, with accuracy improvements of 2.17% and 1.03%. These results indicate the potential for applications needing detailed text processing, like automatic summarisation and misinformation detection.</div></div>\",\"PeriodicalId\":50570,\"journal\":{\"name\":\"Displays\",\"volume\":\"90 \",\"pages\":\"Article 103154\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Displays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S014193822500191X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014193822500191X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个用于假新闻检测的联合学习框架,通过统一的多任务方法,引入了一个集成了命名实体识别、关系特征分类和姿态检测的增强BERT模型。该模型结合了特定于任务的屏蔽和分层注意机制,以捕获标题和正文之间的细粒度和高级上下文关系。应用跨任务一致性损失来确保与外部事实知识的一致性和一致性。我们分析了从分量到新闻样本质心的平均距离,以有效地区分大规模文本数据中的真实信息和虚假信息。在两个FakeNewsNet数据集上的实验表明,我们的框架优于最先进的模型,准确率分别提高了2.17%和1.03%。这些结果表明了需要详细文本处理的应用程序的潜力,如自动摘要和错误信息检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A joint learning framework for fake news detection

A joint learning framework for fake news detection
This paper presents a joint learning framework for fake news detection, introducing an Enhanced BERT model that integrates named entity recognition, relational feature classification, and Stance Detection through a unified multi-task approach. The model incorporates task-specific masking and hierarchical attention mechanisms to capture both fine-grained and high-level contextual relationships across headlines and body text. Cross-task consistency losses are applied to ensure coherence and alignment with external factual knowledge. We analyse the average distance from components to the centroid of a news sample to differentiate genuine information from falsehoods in large-scale text data effectively. Experiments on two FakeNewsNet datasets show that our framework outperforms state-of-the-art models, with accuracy improvements of 2.17% and 1.03%. These results indicate the potential for applications needing detailed text processing, like automatic summarisation and misinformation detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信