基于弱监督显著表示学习的归纳多重聚类

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wenjie Zhu , Wei Qi Yan
{"title":"基于弱监督显著表示学习的归纳多重聚类","authors":"Wenjie Zhu ,&nbsp;Wei Qi Yan","doi":"10.1016/j.eswa.2025.129082","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing recognition of data diversity has highlighted multiple clustering as a valuable approach for generating diverse clustering solutions. However, conventional methods often prioritize non-redundant clusterings across disjoint subspaces, potentially overlooking key data characteristics and limiting interpretability. In this paper, we propose an Inductive Multiple Clustering (IMC) framework designed to extract distinct and interpretable representations through weakly-supervised learning from diverse clustering perspectives. Specifically, IMC decomposes data objects into group-specific salient components using reconstruction and transformation matrices with low-rank and sparse regularization. To enhance diversity among clusters, an incoherent regularization minimizes similarities between group-specific transformations in a weakly-supervised manner. Unlike previous approaches, our framework emphasizes salient representations and integrates inductive learning into multiple clustering, facilitating comprehensive interpretations of clustering results. We employ the Alternating Direction Method of Multipliers (ADMM) to optimize IMC, leveraging resulting matrices for clustering diverse datasets. Experimental results on benchmark datasets demonstrate IMC’s superiority over existing methods, providing a comprehensive explanation of multiple clustering results and successful extension to unseen data clustering.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"296 ","pages":"Article 129082"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive multiple clustering based on weakly-supervised salient representation learning\",\"authors\":\"Wenjie Zhu ,&nbsp;Wei Qi Yan\",\"doi\":\"10.1016/j.eswa.2025.129082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing recognition of data diversity has highlighted multiple clustering as a valuable approach for generating diverse clustering solutions. However, conventional methods often prioritize non-redundant clusterings across disjoint subspaces, potentially overlooking key data characteristics and limiting interpretability. In this paper, we propose an Inductive Multiple Clustering (IMC) framework designed to extract distinct and interpretable representations through weakly-supervised learning from diverse clustering perspectives. Specifically, IMC decomposes data objects into group-specific salient components using reconstruction and transformation matrices with low-rank and sparse regularization. To enhance diversity among clusters, an incoherent regularization minimizes similarities between group-specific transformations in a weakly-supervised manner. Unlike previous approaches, our framework emphasizes salient representations and integrates inductive learning into multiple clustering, facilitating comprehensive interpretations of clustering results. We employ the Alternating Direction Method of Multipliers (ADMM) to optimize IMC, leveraging resulting matrices for clustering diverse datasets. Experimental results on benchmark datasets demonstrate IMC’s superiority over existing methods, providing a comprehensive explanation of multiple clustering results and successful extension to unseen data clustering.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"296 \",\"pages\":\"Article 129082\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417425026995\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425026995","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着人们对数据多样性的认识不断提高,多重聚类作为一种有价值的方法可以生成不同的聚类解决方案。然而,传统方法通常优先考虑跨不相交子空间的非冗余聚类,可能忽略关键数据特征并限制可解释性。在本文中,我们提出了一个归纳多重聚类(IMC)框架,旨在通过弱监督学习从不同的聚类角度提取不同的可解释表示。具体来说,IMC使用具有低秩和稀疏正则化的重构和变换矩阵将数据对象分解为特定于组的显著成分。为了增强集群之间的多样性,非相干正则化以弱监督的方式最小化了群体特定转换之间的相似性。与以前的方法不同,我们的框架强调显著表示,并将归纳学习集成到多聚类中,促进对聚类结果的全面解释。我们采用乘数交替方向法(ADMM)来优化IMC,利用所得矩阵对不同数据集进行聚类。在基准数据集上的实验结果证明了IMC方法相对于现有方法的优越性,为多重聚类结果提供了全面的解释,并成功地扩展到未见数据聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inductive multiple clustering based on weakly-supervised salient representation learning
The increasing recognition of data diversity has highlighted multiple clustering as a valuable approach for generating diverse clustering solutions. However, conventional methods often prioritize non-redundant clusterings across disjoint subspaces, potentially overlooking key data characteristics and limiting interpretability. In this paper, we propose an Inductive Multiple Clustering (IMC) framework designed to extract distinct and interpretable representations through weakly-supervised learning from diverse clustering perspectives. Specifically, IMC decomposes data objects into group-specific salient components using reconstruction and transformation matrices with low-rank and sparse regularization. To enhance diversity among clusters, an incoherent regularization minimizes similarities between group-specific transformations in a weakly-supervised manner. Unlike previous approaches, our framework emphasizes salient representations and integrates inductive learning into multiple clustering, facilitating comprehensive interpretations of clustering results. We employ the Alternating Direction Method of Multipliers (ADMM) to optimize IMC, leveraging resulting matrices for clustering diverse datasets. Experimental results on benchmark datasets demonstrate IMC’s superiority over existing methods, providing a comprehensive explanation of multiple clustering results and successful extension to unseen data clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信