MSDNet:基于变压器引导原型的多尺度语义分割解码器

IF 4.2 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Amirreza Fateh, Mohammad Reza Mohammadi, Mohammad Reza Jahed-Motlagh
{"title":"MSDNet:基于变压器引导原型的多尺度语义分割解码器","authors":"Amirreza Fateh,&nbsp;Mohammad Reza Mohammadi,&nbsp;Mohammad Reza Jahed-Motlagh","doi":"10.1016/j.imavis.2025.105672","DOIUrl":null,"url":null,"abstract":"<div><div>Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as <span><math><mrow><mi>P</mi><mi>A</mi><mi>S</mi><mi>C</mi><mi>A</mi><mi>L</mi><mtext>-</mtext><msup><mrow><mn>5</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>C</mi><mi>O</mi><mi>C</mi><mi>O</mi><mtext>-</mtext><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. <span><span>https://github.com/amirrezafateh/MSDNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50374,"journal":{"name":"Image and Vision Computing","volume":"162 ","pages":"Article 105672"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MSDNet: Multi-scale decoder for few-shot semantic segmentation via transformer-guided prototyping\",\"authors\":\"Amirreza Fateh,&nbsp;Mohammad Reza Mohammadi,&nbsp;Mohammad Reza Jahed-Motlagh\",\"doi\":\"10.1016/j.imavis.2025.105672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as <span><math><mrow><mi>P</mi><mi>A</mi><mi>S</mi><mi>C</mi><mi>A</mi><mi>L</mi><mtext>-</mtext><msup><mrow><mn>5</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> and <span><math><mrow><mi>C</mi><mi>O</mi><mi>C</mi><mi>O</mi><mtext>-</mtext><mn>2</mn><msup><mrow><mn>0</mn></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span> in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. <span><span>https://github.com/amirrezafateh/MSDNet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50374,\"journal\":{\"name\":\"Image and Vision Computing\",\"volume\":\"162 \",\"pages\":\"Article 105672\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image and Vision Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0262885625002604\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image and Vision Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0262885625002604","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

少数镜头语义分割解决了仅使用少量注释示例对查询图像中的对象进行分割的挑战。然而,许多现有的最先进的方法要么放弃了复杂的局部语义特征,要么计算复杂度很高。为了应对这些挑战,我们提出了一个基于Transformer架构的新的Few-shot语义分割框架。我们的方法引入了空间转换器解码器和上下文掩码生成模块,以提高支持图像和查询图像之间的关系理解。此外,我们还引入了一个多尺度解码器,通过分层方式结合不同分辨率的特征来细化分割掩码。此外,我们的方法集成了中间编码器阶段的全局特性,以提高上下文理解,同时保持轻量级结构以降低复杂性。这种性能和效率之间的平衡使我们的方法能够在基准数据集(如PASCAL-5i和COCO-20i)上在1次和5次设置中获得具有竞争力的结果。值得注意的是,我们的模型只有150万个参数,在克服现有方法限制的同时,展示了具有竞争力的性能。https://github.com/amirrezafateh/MSDNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSDNet: Multi-scale decoder for few-shot semantic segmentation via transformer-guided prototyping
Few-shot Semantic Segmentation addresses the challenge of segmenting objects in query images with only a handful of annotated examples. However, many previous state-of-the-art methods either have to discard intricate local semantic features or suffer from high computational complexity. To address these challenges, we propose a new Few-shot Semantic Segmentation framework based on the Transformer architecture. Our approach introduces the spatial transformer decoder and the contextual mask generation module to improve the relational understanding between support and query images. Moreover, we introduce a multi scale decoder to refine the segmentation mask by incorporating features from different resolutions in a hierarchical manner. Additionally, our approach integrates global features from intermediate encoder stages to improve contextual understanding, while maintaining a lightweight structure to reduce complexity. This balance between performance and efficiency enables our method to achieve competitive results on benchmark datasets such as PASCAL-5i and COCO-20i in both 1-shot and 5-shot settings. Notably, our model with only 1.5 million parameters demonstrates competitive performance while overcoming limitations of existing methodologies. https://github.com/amirrezafateh/MSDNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Image and Vision Computing
Image and Vision Computing 工程技术-工程:电子与电气
CiteScore
8.50
自引率
8.50%
发文量
143
审稿时长
7.8 months
期刊介绍: Image and Vision Computing has as a primary aim the provision of an effective medium of interchange for the results of high quality theoretical and applied research fundamental to all aspects of image interpretation and computer vision. The journal publishes work that proposes new image interpretation and computer vision methodology or addresses the application of such methods to real world scenes. It seeks to strengthen a deeper understanding in the discipline by encouraging the quantitative comparison and performance evaluation of the proposed methodology. The coverage includes: image interpretation, scene modelling, object recognition and tracking, shape analysis, monitoring and surveillance, active vision and robotic systems, SLAM, biologically-inspired computer vision, motion analysis, stereo vision, document image understanding, character and handwritten text recognition, face and gesture recognition, biometrics, vision-based human-computer interaction, human activity and behavior understanding, data fusion from multiple sensor inputs, image databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信