DiffSBR:基于会话的推荐的扩散模型

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zihe Wang , Bo Jin
{"title":"DiffSBR:基于会话的推荐的扩散模型","authors":"Zihe Wang ,&nbsp;Bo Jin","doi":"10.1016/j.ipm.2025.104284","DOIUrl":null,"url":null,"abstract":"<div><div>Session-based recommendation (SBR) focuses on recommending items to anonymous users within short interaction sequences. Existing solutions focus on modeling item representations as fixed embedding vectors within the discriminative learning paradigm, which fail to accurately capture the diverse preferences that user exhibit during dynamic decision-making. We argue that users in the anonymous environment can fundamentally be regarded as a <strong>normative implicit group</strong>, exhibiting both <strong>homogeneous preference</strong> and <strong>heterogeneous preference</strong> when selecting items. To tackle this, we propose a Diffusion Model for Session-based Recommendation (DiffSBR). Specifically, we first model the aforementioned user diverse preferences from both local and global views. Next, we introduce a cluster-aware diffusion model, which directly represents heterogeneous preference clusters as distribution through forward and reverse processes, while indirectly influencing homogeneous preference via the attention mechanism in the final prediction stage, thereby improving the learning of item and session representations and enhancing the next-item recommendation. Experimental results show that DiffSBR outperforms the strong baseline, demonstrating that this sampling-allocation approach accurately reflects the uncertainty and variability in user preferences.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"63 1","pages":"Article 104284"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DiffSBR: A diffusion model for session-based recommendation\",\"authors\":\"Zihe Wang ,&nbsp;Bo Jin\",\"doi\":\"10.1016/j.ipm.2025.104284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Session-based recommendation (SBR) focuses on recommending items to anonymous users within short interaction sequences. Existing solutions focus on modeling item representations as fixed embedding vectors within the discriminative learning paradigm, which fail to accurately capture the diverse preferences that user exhibit during dynamic decision-making. We argue that users in the anonymous environment can fundamentally be regarded as a <strong>normative implicit group</strong>, exhibiting both <strong>homogeneous preference</strong> and <strong>heterogeneous preference</strong> when selecting items. To tackle this, we propose a Diffusion Model for Session-based Recommendation (DiffSBR). Specifically, we first model the aforementioned user diverse preferences from both local and global views. Next, we introduce a cluster-aware diffusion model, which directly represents heterogeneous preference clusters as distribution through forward and reverse processes, while indirectly influencing homogeneous preference via the attention mechanism in the final prediction stage, thereby improving the learning of item and session representations and enhancing the next-item recommendation. Experimental results show that DiffSBR outperforms the strong baseline, demonstrating that this sampling-allocation approach accurately reflects the uncertainty and variability in user preferences.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"63 1\",\"pages\":\"Article 104284\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325002250\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325002250","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于会话的推荐(SBR)侧重于在短的交互序列中向匿名用户推荐项目。现有的解决方案侧重于将项目表示建模为判别学习范式中的固定嵌入向量,这无法准确捕获用户在动态决策过程中表现出的不同偏好。我们认为,匿名环境中的用户从根本上可以被视为一个规范的内隐群体,在选择物品时表现出同质偏好和异质偏好。为了解决这个问题,我们提出了一个基于会话的推荐扩散模型(DiffSBR)。具体来说,我们首先从本地和全局视图对上述用户的不同偏好进行建模。接下来,我们引入了一个集群感知扩散模型,该模型通过正向和反向过程直接表示异构偏好集群作为分布,同时在最终预测阶段通过注意机制间接影响同质偏好,从而提高项目和会话表征的学习,增强下一项目的推荐。实验结果表明,DiffSBR优于强基线,表明这种抽样分配方法准确地反映了用户偏好的不确定性和可变性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DiffSBR: A diffusion model for session-based recommendation
Session-based recommendation (SBR) focuses on recommending items to anonymous users within short interaction sequences. Existing solutions focus on modeling item representations as fixed embedding vectors within the discriminative learning paradigm, which fail to accurately capture the diverse preferences that user exhibit during dynamic decision-making. We argue that users in the anonymous environment can fundamentally be regarded as a normative implicit group, exhibiting both homogeneous preference and heterogeneous preference when selecting items. To tackle this, we propose a Diffusion Model for Session-based Recommendation (DiffSBR). Specifically, we first model the aforementioned user diverse preferences from both local and global views. Next, we introduce a cluster-aware diffusion model, which directly represents heterogeneous preference clusters as distribution through forward and reverse processes, while indirectly influencing homogeneous preference via the attention mechanism in the final prediction stage, thereby improving the learning of item and session representations and enhancing the next-item recommendation. Experimental results show that DiffSBR outperforms the strong baseline, demonstrating that this sampling-allocation approach accurately reflects the uncertainty and variability in user preferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信