对流流中三维轨道的拓扑数据分析

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Ahtziri González , Brayan Hernández , Karla P. Acosta-Zamora , Eduardo Ramos , José Núñez
{"title":"对流流中三维轨道的拓扑数据分析","authors":"Ahtziri González ,&nbsp;Brayan Hernández ,&nbsp;Karla P. Acosta-Zamora ,&nbsp;Eduardo Ramos ,&nbsp;José Núñez","doi":"10.1016/j.physd.2025.134841","DOIUrl":null,"url":null,"abstract":"<div><div>We study the topological properties of the Lagrangian orbits of natural convection in a cube with Rayleigh numbers corresponding to steady-state motion. The Lagrangian orbits are considered clusters of points distributed in a three-dimensional space. This leads to the natural application of topological data analysis (TDA) tools that include alpha complexes, 0-, 1- and 2-persistent homologies, persistence diagrams, and the bottleneck metric. For low Rayleigh numbers, the analysis is applied to orbits that correspond to a region in a Poincaré map around an elliptic point. This leads to the conclusion that the points comprising individual Lagrangian orbits are embedded on the surfaces of nested tori. For larger Rayleigh numbers, the Poincaré map includes two elliptic points separated by a chaotic region. The points composing the orbits in the three dimensional space, form two nested tori structures separated by complex and difficult to classify orbits. The bottleneck metric applied to the 0-, 1- and 2-persistence diagrams, captures a smooth evolution of the structures’ geometrical properties, suggesting an order of the orbits present in the chaotic region. Interestingly, in the region between the two nested tori structures, an orbit with topological properties similar to a trivalent 2-stratifold was found.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"481 ","pages":"Article 134841"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological data analysis of three dimensional orbits in a convective flow\",\"authors\":\"Ahtziri González ,&nbsp;Brayan Hernández ,&nbsp;Karla P. Acosta-Zamora ,&nbsp;Eduardo Ramos ,&nbsp;José Núñez\",\"doi\":\"10.1016/j.physd.2025.134841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the topological properties of the Lagrangian orbits of natural convection in a cube with Rayleigh numbers corresponding to steady-state motion. The Lagrangian orbits are considered clusters of points distributed in a three-dimensional space. This leads to the natural application of topological data analysis (TDA) tools that include alpha complexes, 0-, 1- and 2-persistent homologies, persistence diagrams, and the bottleneck metric. For low Rayleigh numbers, the analysis is applied to orbits that correspond to a region in a Poincaré map around an elliptic point. This leads to the conclusion that the points comprising individual Lagrangian orbits are embedded on the surfaces of nested tori. For larger Rayleigh numbers, the Poincaré map includes two elliptic points separated by a chaotic region. The points composing the orbits in the three dimensional space, form two nested tori structures separated by complex and difficult to classify orbits. The bottleneck metric applied to the 0-, 1- and 2-persistence diagrams, captures a smooth evolution of the structures’ geometrical properties, suggesting an order of the orbits present in the chaotic region. Interestingly, in the region between the two nested tori structures, an orbit with topological properties similar to a trivalent 2-stratifold was found.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"481 \",\"pages\":\"Article 134841\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167278925003185\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003185","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有瑞利数的立方体中自然对流拉格朗日轨道的拓扑性质。拉格朗日轨道被认为是分布在三维空间中的点群。这导致了拓扑数据分析(TDA)工具的自然应用,这些工具包括alpha复合体、0-持久性、1-持久性和2-持久性同构、持久性图和瓶颈度量。对于低瑞利数,分析应用于与庞加莱图中围绕椭圆点的区域相对应的轨道。由此得出结论,构成单个拉格朗日轨道的点嵌入在嵌套环面的表面上。对于较大的瑞利数,庞加莱图包括两个由混沌区域隔开的椭圆点。组成轨道的点在三维空间中形成两个嵌套的环面结构,被复杂且难以分类的轨道分隔开。瓶颈度量应用于0-、1-和2-持久性图,捕捉到结构几何性质的平滑演变,表明混沌区域中存在轨道的顺序。有趣的是,在两个嵌套环面结构之间的区域,发现了一个拓扑性质类似于三价2层的轨道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topological data analysis of three dimensional orbits in a convective flow
We study the topological properties of the Lagrangian orbits of natural convection in a cube with Rayleigh numbers corresponding to steady-state motion. The Lagrangian orbits are considered clusters of points distributed in a three-dimensional space. This leads to the natural application of topological data analysis (TDA) tools that include alpha complexes, 0-, 1- and 2-persistent homologies, persistence diagrams, and the bottleneck metric. For low Rayleigh numbers, the analysis is applied to orbits that correspond to a region in a Poincaré map around an elliptic point. This leads to the conclusion that the points comprising individual Lagrangian orbits are embedded on the surfaces of nested tori. For larger Rayleigh numbers, the Poincaré map includes two elliptic points separated by a chaotic region. The points composing the orbits in the three dimensional space, form two nested tori structures separated by complex and difficult to classify orbits. The bottleneck metric applied to the 0-, 1- and 2-persistence diagrams, captures a smooth evolution of the structures’ geometrical properties, suggesting an order of the orbits present in the chaotic region. Interestingly, in the region between the two nested tori structures, an orbit with topological properties similar to a trivalent 2-stratifold was found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信