{"title":"主gm束的Gromov椭圆性","authors":"Sh. Kaliman","doi":"10.1016/j.aim.2025.110444","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that every nontrivial principal <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-bundle over a complete stably uniformly rational variety is algebraically elliptic in the sense of Gromov.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110444"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gromov's ellipticity of principal Gm-bundles\",\"authors\":\"Sh. Kaliman\",\"doi\":\"10.1016/j.aim.2025.110444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that every nontrivial principal <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-bundle over a complete stably uniformly rational variety is algebraically elliptic in the sense of Gromov.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110444\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003421\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003421","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.