Cassandra Litchfield , Ronny Nienhold , Andreas Wicki , Michael Schmid , Domingo Aguilera-Garcia , Viktor Hendrik Koelzer
{"title":"整合福尔马林固定,石蜡包埋衍生的全基因组测序常规分子病理学","authors":"Cassandra Litchfield , Ronny Nienhold , Andreas Wicki , Michael Schmid , Domingo Aguilera-Garcia , Viktor Hendrik Koelzer","doi":"10.1016/j.jmoldx.2025.04.011","DOIUrl":null,"url":null,"abstract":"<div><div>Formalin-fixed, paraffin-embedded (FFPE) tumor tissue is the standard in pathology due to logistical and quality constraints of fresh-frozen samples. Although whole-genome sequencing (WGS) offers diagnostic promise, its validity and utility in FFPE samples remain underexplored. This study bridges the gap by comparing FFPE-derived tumor WGS with next-generation sequencing results from FoundationOneCDx (F1CDx) and a melanoma-specific panel (MelArray) in 78 metastatic melanoma samples from the Swiss Tumor Profiler Study. A diagnostic pipeline was developed for quality control, variant annotation, and clinical actionability using public and commercial databases. FFPE-derived WGS displayed robust analytical validity, detecting 95% of somatic single nucleotide variants, 98% of multinucleotide variants, 90% of insertions/deletions, 76% of amplifications, and 96% of homozygous deletions identified by F1CDx. Tumor mutational burden strongly correlated with F1CDx (<em>R</em> = 0.98), particularly at the clinical threshold of ≥10 mutations per megabase, crucial for treatment decisions. WGS detected complex biomarkers such as UV-associated mutational signatures and genome-wide copy number alterations, aiding melanoma subtype distinction. Clinically, WGS suggested treatments or trials for all cases, identifying additional markers in 38% and 71% compared with F1CDx and MelArray, respectively. Novel therapeutic opportunities were found in 18% and 56% of cases. FFPE-derived WGS closely matches targeted panels in performance while providing comprehensive insights, enhancing therapeutic options. With decreasing costs, WGS could become a powerful routine diagnostic tool.</div></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":"27 8","pages":"Pages 722-735"},"PeriodicalIF":3.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating Formalin-Fixed, Paraffin-Embedded–Derived Whole-Genome Sequencing into Routine Molecular Pathology\",\"authors\":\"Cassandra Litchfield , Ronny Nienhold , Andreas Wicki , Michael Schmid , Domingo Aguilera-Garcia , Viktor Hendrik Koelzer\",\"doi\":\"10.1016/j.jmoldx.2025.04.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Formalin-fixed, paraffin-embedded (FFPE) tumor tissue is the standard in pathology due to logistical and quality constraints of fresh-frozen samples. Although whole-genome sequencing (WGS) offers diagnostic promise, its validity and utility in FFPE samples remain underexplored. This study bridges the gap by comparing FFPE-derived tumor WGS with next-generation sequencing results from FoundationOneCDx (F1CDx) and a melanoma-specific panel (MelArray) in 78 metastatic melanoma samples from the Swiss Tumor Profiler Study. A diagnostic pipeline was developed for quality control, variant annotation, and clinical actionability using public and commercial databases. FFPE-derived WGS displayed robust analytical validity, detecting 95% of somatic single nucleotide variants, 98% of multinucleotide variants, 90% of insertions/deletions, 76% of amplifications, and 96% of homozygous deletions identified by F1CDx. Tumor mutational burden strongly correlated with F1CDx (<em>R</em> = 0.98), particularly at the clinical threshold of ≥10 mutations per megabase, crucial for treatment decisions. WGS detected complex biomarkers such as UV-associated mutational signatures and genome-wide copy number alterations, aiding melanoma subtype distinction. Clinically, WGS suggested treatments or trials for all cases, identifying additional markers in 38% and 71% compared with F1CDx and MelArray, respectively. Novel therapeutic opportunities were found in 18% and 56% of cases. FFPE-derived WGS closely matches targeted panels in performance while providing comprehensive insights, enhancing therapeutic options. With decreasing costs, WGS could become a powerful routine diagnostic tool.</div></div>\",\"PeriodicalId\":50128,\"journal\":{\"name\":\"Journal of Molecular Diagnostics\",\"volume\":\"27 8\",\"pages\":\"Pages 722-735\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1525157825001345\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525157825001345","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Integrating Formalin-Fixed, Paraffin-Embedded–Derived Whole-Genome Sequencing into Routine Molecular Pathology
Formalin-fixed, paraffin-embedded (FFPE) tumor tissue is the standard in pathology due to logistical and quality constraints of fresh-frozen samples. Although whole-genome sequencing (WGS) offers diagnostic promise, its validity and utility in FFPE samples remain underexplored. This study bridges the gap by comparing FFPE-derived tumor WGS with next-generation sequencing results from FoundationOneCDx (F1CDx) and a melanoma-specific panel (MelArray) in 78 metastatic melanoma samples from the Swiss Tumor Profiler Study. A diagnostic pipeline was developed for quality control, variant annotation, and clinical actionability using public and commercial databases. FFPE-derived WGS displayed robust analytical validity, detecting 95% of somatic single nucleotide variants, 98% of multinucleotide variants, 90% of insertions/deletions, 76% of amplifications, and 96% of homozygous deletions identified by F1CDx. Tumor mutational burden strongly correlated with F1CDx (R = 0.98), particularly at the clinical threshold of ≥10 mutations per megabase, crucial for treatment decisions. WGS detected complex biomarkers such as UV-associated mutational signatures and genome-wide copy number alterations, aiding melanoma subtype distinction. Clinically, WGS suggested treatments or trials for all cases, identifying additional markers in 38% and 71% compared with F1CDx and MelArray, respectively. Novel therapeutic opportunities were found in 18% and 56% of cases. FFPE-derived WGS closely matches targeted panels in performance while providing comprehensive insights, enhancing therapeutic options. With decreasing costs, WGS could become a powerful routine diagnostic tool.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.