对称分段线性多步方法的长期行为。I:全局误差和不变量的守恒

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Begoña Cano, Ángel Durán, Melquiades Rodríguez
{"title":"对称分段线性多步方法的长期行为。I:全局误差和不变量的守恒","authors":"Begoña Cano, Ángel Durán, Melquiades Rodríguez","doi":"10.1093/imanum/draf062","DOIUrl":null,"url":null,"abstract":"In this paper an asymptotic expansion of the global error on the stepsize for partitioned linear multistep methods is proved. This provides a tool to analyse the behaviour of these integrators with respect to error growth with time and conservation of invariants. In particular, symmetric partitioned linear multistep methods with no common roots in their first characteristic polynomials, except unity, appear as efficient methods to approximate nonseparable Hamiltonian systems since they can be explicit and show good long term behaviour at the same time. As a case study, a thorough analysis is given for small oscillations of the double pendulum problem, which is illustrated by numerical experiments.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"15 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term behaviour of symmetric partitioned linear multistep methods. I: global error and conservation of invariants\",\"authors\":\"Begoña Cano, Ángel Durán, Melquiades Rodríguez\",\"doi\":\"10.1093/imanum/draf062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper an asymptotic expansion of the global error on the stepsize for partitioned linear multistep methods is proved. This provides a tool to analyse the behaviour of these integrators with respect to error growth with time and conservation of invariants. In particular, symmetric partitioned linear multistep methods with no common roots in their first characteristic polynomials, except unity, appear as efficient methods to approximate nonseparable Hamiltonian systems since they can be explicit and show good long term behaviour at the same time. As a case study, a thorough analysis is given for small oscillations of the double pendulum problem, which is illustrated by numerical experiments.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/draf062\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf062","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了分段线性多步方法的步长误差的渐近展开式。这提供了一个工具来分析这些积分器在误差随时间增长和不变量守恒方面的行为。特别是,对称分块线性多步方法在其第一个特征多项式中没有公根,除了统一,似乎是近似不可分哈密顿系统的有效方法,因为它们可以显式地同时显示出良好的长期行为。本文以数值实验为例,对小振荡的双摆问题进行了深入的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-term behaviour of symmetric partitioned linear multistep methods. I: global error and conservation of invariants
In this paper an asymptotic expansion of the global error on the stepsize for partitioned linear multistep methods is proved. This provides a tool to analyse the behaviour of these integrators with respect to error growth with time and conservation of invariants. In particular, symmetric partitioned linear multistep methods with no common roots in their first characteristic polynomials, except unity, appear as efficient methods to approximate nonseparable Hamiltonian systems since they can be explicit and show good long term behaviour at the same time. As a case study, a thorough analysis is given for small oscillations of the double pendulum problem, which is illustrated by numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信