审查块模型的差异私有在线社区检测:算法和基本限制

IF 8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Mohamed Seif;Liyan Xie;Andrea J. Goldsmith;H. Vincent Poor
{"title":"审查块模型的差异私有在线社区检测:算法和基本限制","authors":"Mohamed Seif;Liyan Xie;Andrea J. Goldsmith;H. Vincent Poor","doi":"10.1109/TIFS.2025.3592556","DOIUrl":null,"url":null,"abstract":"We study the private online change detection problem for dynamic communities, using a censored block model (CBM). We consider edge differential privacy (DP) in both local and central settings, and propose joint change detection and community estimation procedures for both scenarios. We seek to understand the fundamental tradeoffs between the privacy budget, detection delay, and exact community recovery of community labels. Further, we provide theoretical guarantees for the effectiveness of our proposed method by showing necessary and sufficient conditions for change detection and exact recovery under edge DP. Simulation and real data examples are provided to validate the proposed methods.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"8312-8326"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differentially Private Online Community Detection for Censored Block Models: Algorithms and Fundamental Limits\",\"authors\":\"Mohamed Seif;Liyan Xie;Andrea J. Goldsmith;H. Vincent Poor\",\"doi\":\"10.1109/TIFS.2025.3592556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the private online change detection problem for dynamic communities, using a censored block model (CBM). We consider edge differential privacy (DP) in both local and central settings, and propose joint change detection and community estimation procedures for both scenarios. We seek to understand the fundamental tradeoffs between the privacy budget, detection delay, and exact community recovery of community labels. Further, we provide theoretical guarantees for the effectiveness of our proposed method by showing necessary and sufficient conditions for change detection and exact recovery under edge DP. Simulation and real data examples are provided to validate the proposed methods.\",\"PeriodicalId\":13492,\"journal\":{\"name\":\"IEEE Transactions on Information Forensics and Security\",\"volume\":\"20 \",\"pages\":\"8312-8326\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Forensics and Security\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11095732/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11095732/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们使用审查块模型(CBM)研究动态社区的私有在线变化检测问题。我们考虑了局部和中心环境下的边缘差分隐私(DP),并提出了两种情况下的联合变化检测和社区估计程序。我们试图理解隐私预算、检测延迟和社区标签的精确社区恢复之间的基本权衡。此外,通过给出边缘DP下变化检测和精确恢复的充分必要条件,为本文方法的有效性提供了理论保证。通过仿真和实际数据算例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differentially Private Online Community Detection for Censored Block Models: Algorithms and Fundamental Limits
We study the private online change detection problem for dynamic communities, using a censored block model (CBM). We consider edge differential privacy (DP) in both local and central settings, and propose joint change detection and community estimation procedures for both scenarios. We seek to understand the fundamental tradeoffs between the privacy budget, detection delay, and exact community recovery of community labels. Further, we provide theoretical guarantees for the effectiveness of our proposed method by showing necessary and sufficient conditions for change detection and exact recovery under edge DP. Simulation and real data examples are provided to validate the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Forensics and Security
IEEE Transactions on Information Forensics and Security 工程技术-工程:电子与电气
CiteScore
14.40
自引率
7.40%
发文量
234
审稿时长
6.5 months
期刊介绍: The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信