Deyasini Chakraborty, Colby R. Sandate, Luke Isbel, Georg Kempf, Joscha Weiss, Simone Cavadini, Lukas Kater, Jan Seebacher, Zuzanna Kozicka, Lisa Stoos, Ralph S. Grand, Dirk Schübeler, Alicia K. Michael, Nicolas H. Thomä
{"title":"核小体指定辅助因子进入p53","authors":"Deyasini Chakraborty, Colby R. Sandate, Luke Isbel, Georg Kempf, Joscha Weiss, Simone Cavadini, Lukas Kater, Jan Seebacher, Zuzanna Kozicka, Lisa Stoos, Ralph S. Grand, Dirk Schübeler, Alicia K. Michael, Nicolas H. Thomä","doi":"10.1016/j.molcel.2025.06.027","DOIUrl":null,"url":null,"abstract":"Pioneer transcription factors (TFs) engage chromatinized DNA motifs. However, it is unclear how the resultant TF-nucleosome complexes are decoded by co-factors. In humans, the TF p53 regulates cell-cycle progression, apoptosis, and the DNA damage response, with a large fraction of p53-bound sites residing in nucleosome-harboring inaccessible chromatin. We examined the interaction of chromatin-bound p53 with co-factors belonging to the ubiquitin proteasome system (UPS). At two distinct motif locations on the nucleosome (super-helical location [SHL]−5.7 and SHL+5.9), the E3 ubiquitin ligase E6-E6AP was unable to bind nucleosome-engaged p53. The deubiquitinase USP7, on the other hand, readily engages nucleosome-bound p53 <em>in vitro</em> and in cells. A corresponding cryo-electron microscopy (cryo-EM) structure shows USP7 engaged with p53 and nucleosomes. Our work illustrates how chromatin imposes a co-factor-selective barrier for p53 interactors, whereby flexibly tethered interaction domains of co-factors and TFs govern compatibility between co-factors, TFs, and chromatin.","PeriodicalId":18950,"journal":{"name":"Molecular Cell","volume":"20 1","pages":""},"PeriodicalIF":14.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nucleosomes specify co-factor access to p53\",\"authors\":\"Deyasini Chakraborty, Colby R. Sandate, Luke Isbel, Georg Kempf, Joscha Weiss, Simone Cavadini, Lukas Kater, Jan Seebacher, Zuzanna Kozicka, Lisa Stoos, Ralph S. Grand, Dirk Schübeler, Alicia K. Michael, Nicolas H. Thomä\",\"doi\":\"10.1016/j.molcel.2025.06.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pioneer transcription factors (TFs) engage chromatinized DNA motifs. However, it is unclear how the resultant TF-nucleosome complexes are decoded by co-factors. In humans, the TF p53 regulates cell-cycle progression, apoptosis, and the DNA damage response, with a large fraction of p53-bound sites residing in nucleosome-harboring inaccessible chromatin. We examined the interaction of chromatin-bound p53 with co-factors belonging to the ubiquitin proteasome system (UPS). At two distinct motif locations on the nucleosome (super-helical location [SHL]−5.7 and SHL+5.9), the E3 ubiquitin ligase E6-E6AP was unable to bind nucleosome-engaged p53. The deubiquitinase USP7, on the other hand, readily engages nucleosome-bound p53 <em>in vitro</em> and in cells. A corresponding cryo-electron microscopy (cryo-EM) structure shows USP7 engaged with p53 and nucleosomes. Our work illustrates how chromatin imposes a co-factor-selective barrier for p53 interactors, whereby flexibly tethered interaction domains of co-factors and TFs govern compatibility between co-factors, TFs, and chromatin.\",\"PeriodicalId\":18950,\"journal\":{\"name\":\"Molecular Cell\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.molcel.2025.06.027\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molcel.2025.06.027","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pioneer transcription factors (TFs) engage chromatinized DNA motifs. However, it is unclear how the resultant TF-nucleosome complexes are decoded by co-factors. In humans, the TF p53 regulates cell-cycle progression, apoptosis, and the DNA damage response, with a large fraction of p53-bound sites residing in nucleosome-harboring inaccessible chromatin. We examined the interaction of chromatin-bound p53 with co-factors belonging to the ubiquitin proteasome system (UPS). At two distinct motif locations on the nucleosome (super-helical location [SHL]−5.7 and SHL+5.9), the E3 ubiquitin ligase E6-E6AP was unable to bind nucleosome-engaged p53. The deubiquitinase USP7, on the other hand, readily engages nucleosome-bound p53 in vitro and in cells. A corresponding cryo-electron microscopy (cryo-EM) structure shows USP7 engaged with p53 and nucleosomes. Our work illustrates how chromatin imposes a co-factor-selective barrier for p53 interactors, whereby flexibly tethered interaction domains of co-factors and TFs govern compatibility between co-factors, TFs, and chromatin.
期刊介绍:
Molecular Cell is a companion to Cell, the leading journal of biology and the highest-impact journal in the world. Launched in December 1997 and published monthly. Molecular Cell is dedicated to publishing cutting-edge research in molecular biology, focusing on fundamental cellular processes. The journal encompasses a wide range of topics, including DNA replication, recombination, and repair; Chromatin biology and genome organization; Transcription; RNA processing and decay; Non-coding RNA function; Translation; Protein folding, modification, and quality control; Signal transduction pathways; Cell cycle and checkpoints; Cell death; Autophagy; Metabolism.