含硼氮杂质的氟化不对称之字形碳化硅纳米带的自旋热电性质

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Somaye Esteki and Rouhollah Farghadan
{"title":"含硼氮杂质的氟化不对称之字形碳化硅纳米带的自旋热电性质","authors":"Somaye Esteki and Rouhollah Farghadan","doi":"10.1039/D5CP00935A","DOIUrl":null,"url":null,"abstract":"<p >We investigated the spin caloritronic properties of zigzag silicon carbide nanoribbons with asymmetric fluorine edges (2F-8ZSiCNR-1F) doped with boron (B) or nitrogen (N) using density functional theory. Doping 2F-8ZSiCNRs-F with group III/V elements changes band structure states near the Fermi surface and modifies the systems magnetic moment. The doped structures exhibit magnetic metallic, half-metallic, and spin-semiconducting properties, with the dopant type and position significantly influencing spin-dependent thermoelectric properties. Pure thermal spin current reach 50–90 nA, while B and N doping induce perfect spin-filtering with negative differential thermal resistance. At zero chemical potential, the spin Seebeck coefficient (<em>S</em><small><sub>S</sub></small>) ranges from 0.01 mV K<small><sup>−1</sup></small> to 1.5 mV K<small><sup>−1</sup></small>. These results highlight the potential of impurity engineering to enhance thermoelectric performance in spin caloritronic applications.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 33","pages":" 17270-17279"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin thermoelectric properties in fluorinated asymmetric zigzag SiC nanoribbons with boron and nitrogen impurities\",\"authors\":\"Somaye Esteki and Rouhollah Farghadan\",\"doi\":\"10.1039/D5CP00935A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We investigated the spin caloritronic properties of zigzag silicon carbide nanoribbons with asymmetric fluorine edges (2F-8ZSiCNR-1F) doped with boron (B) or nitrogen (N) using density functional theory. Doping 2F-8ZSiCNRs-F with group III/V elements changes band structure states near the Fermi surface and modifies the systems magnetic moment. The doped structures exhibit magnetic metallic, half-metallic, and spin-semiconducting properties, with the dopant type and position significantly influencing spin-dependent thermoelectric properties. Pure thermal spin current reach 50–90 nA, while B and N doping induce perfect spin-filtering with negative differential thermal resistance. At zero chemical potential, the spin Seebeck coefficient (<em>S</em><small><sub>S</sub></small>) ranges from 0.01 mV K<small><sup>−1</sup></small> to 1.5 mV K<small><sup>−1</sup></small>. These results highlight the potential of impurity engineering to enhance thermoelectric performance in spin caloritronic applications.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 33\",\"pages\":\" 17270-17279\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00935a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00935a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论研究了掺杂硼(B)或氮(N)的不对称氟边之字形碳化硅纳米带(2F-8ZSiCNR-1F)的自旋热电子性质。在2f - 8zsicnr - f中掺杂III/V族元素,改变了费米表面附近的能带结构状态,改变了体系的磁矩。掺杂结构表现出磁性金属、半金属和自旋半导体性质,掺杂类型和位置显著影响自旋相关的热电性质。纯热自旋电流达到50-90 nA, B和N掺杂产生完美的自旋滤波,具有负差热阻。在零化学势下,自旋塞贝克系数($S_S$)在0.01 mV/K ~ 1.5 mV/K之间。这些结果突出了杂质工程在自旋热电子应用中提高热电性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spin thermoelectric properties in fluorinated asymmetric zigzag SiC nanoribbons with boron and nitrogen impurities

Spin thermoelectric properties in fluorinated asymmetric zigzag SiC nanoribbons with boron and nitrogen impurities

We investigated the spin caloritronic properties of zigzag silicon carbide nanoribbons with asymmetric fluorine edges (2F-8ZSiCNR-1F) doped with boron (B) or nitrogen (N) using density functional theory. Doping 2F-8ZSiCNRs-F with group III/V elements changes band structure states near the Fermi surface and modifies the systems magnetic moment. The doped structures exhibit magnetic metallic, half-metallic, and spin-semiconducting properties, with the dopant type and position significantly influencing spin-dependent thermoelectric properties. Pure thermal spin current reach 50–90 nA, while B and N doping induce perfect spin-filtering with negative differential thermal resistance. At zero chemical potential, the spin Seebeck coefficient (SS) ranges from 0.01 mV K−1 to 1.5 mV K−1. These results highlight the potential of impurity engineering to enhance thermoelectric performance in spin caloritronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信