局域阳离子有序超晶格稳定富镍单晶阴极。

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tao Huang,Weiyuan Huang,Pei Liu,Yang Gu,Xiangzhong Ren,Jianhong Liu,Xianghui Xiao,Khalil Amine,Qianling Zhang,Biwei Xiao,Tongchao Liu,Jiangtao Hu
{"title":"局域阳离子有序超晶格稳定富镍单晶阴极。","authors":"Tao Huang,Weiyuan Huang,Pei Liu,Yang Gu,Xiangzhong Ren,Jianhong Liu,Xianghui Xiao,Khalil Amine,Qianling Zhang,Biwei Xiao,Tongchao Liu,Jiangtao Hu","doi":"10.1021/jacs.5c00615","DOIUrl":null,"url":null,"abstract":"Ni-rich single-crystalline cathodes are pivotal for advancing lithium-ion battery technology due to their high energy density and mechanical stability. However, Ni-rich single-crystalline particles face intrinsic structural heterogeneity due to excessively high sintering temperature required to shape micron-sized morphologies─typically over 150 °C above the polycrystalline optimum, leading to rapid electrochemical decay and unsatisfied rate performance that hinder their practical application. Here, we propose a lithium-deficient presintering strategy to synthesize cation-ordered single-crystalline LiNi0.83Co0.12Mn0.05O2 (S-NCM83), effectively minimizing lattice chemical heterogeneity and defect formation. The resulting cation-ordered percolation network enhances the structural stability of the bulk, reduces the energy barrier for Li+ migration, and stabilizes Li+ diffusion pathways. Consequently, S-NCM83 demonstrates significantly improved cycling stability across various operating temperatures and achieves exceptional rate performance, delivering 206 mAh g-1 at 0.1 C and 170 mAh g-1 at 5 C, without requiring surface coatings or doping. This work introduces a universal strategy to address the long-standing structural instability issues in single-crystalline cathodes, paving the way for simplified and scalable approaches to long-life and high-energy lithium-ion batteries.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"20 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Cation-Ordered Superlattice Stabilizing Ni-Rich Single-Crystalline Cathodes.\",\"authors\":\"Tao Huang,Weiyuan Huang,Pei Liu,Yang Gu,Xiangzhong Ren,Jianhong Liu,Xianghui Xiao,Khalil Amine,Qianling Zhang,Biwei Xiao,Tongchao Liu,Jiangtao Hu\",\"doi\":\"10.1021/jacs.5c00615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ni-rich single-crystalline cathodes are pivotal for advancing lithium-ion battery technology due to their high energy density and mechanical stability. However, Ni-rich single-crystalline particles face intrinsic structural heterogeneity due to excessively high sintering temperature required to shape micron-sized morphologies─typically over 150 °C above the polycrystalline optimum, leading to rapid electrochemical decay and unsatisfied rate performance that hinder their practical application. Here, we propose a lithium-deficient presintering strategy to synthesize cation-ordered single-crystalline LiNi0.83Co0.12Mn0.05O2 (S-NCM83), effectively minimizing lattice chemical heterogeneity and defect formation. The resulting cation-ordered percolation network enhances the structural stability of the bulk, reduces the energy barrier for Li+ migration, and stabilizes Li+ diffusion pathways. Consequently, S-NCM83 demonstrates significantly improved cycling stability across various operating temperatures and achieves exceptional rate performance, delivering 206 mAh g-1 at 0.1 C and 170 mAh g-1 at 5 C, without requiring surface coatings or doping. This work introduces a universal strategy to address the long-standing structural instability issues in single-crystalline cathodes, paving the way for simplified and scalable approaches to long-life and high-energy lithium-ion batteries.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c00615\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于其高能量密度和机械稳定性,富镍单晶阴极对推进锂离子电池技术至关重要。然而,由于形成微米级形貌所需的烧结温度过高(通常比最佳多晶高150°C以上),富镍单晶颗粒面临固有的结构不均匀性,导致快速的电化学衰减和不满意的速率性能,阻碍了它们的实际应用。在此,我们提出了一种缺锂预烧结策略来合成阳离子有序单晶LiNi0.83Co0.12Mn0.05O2 (S-NCM83),有效地减少了晶格化学非均质性和缺陷形成。由此形成的阳离子有序渗透网络增强了体的结构稳定性,降低了Li+迁移的能垒,稳定了Li+的扩散途径。因此,S-NCM83在各种工作温度下的循环稳定性都得到了显著提高,并实现了卓越的倍率性能,在0.1℃下提供206 mAh g-1,在5℃下提供170 mAh g-1,而不需要表面涂层或掺杂。这项工作介绍了一种解决单晶阴极长期存在的结构不稳定问题的通用策略,为长寿命和高能锂离子电池的简化和可扩展方法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Cation-Ordered Superlattice Stabilizing Ni-Rich Single-Crystalline Cathodes.
Ni-rich single-crystalline cathodes are pivotal for advancing lithium-ion battery technology due to their high energy density and mechanical stability. However, Ni-rich single-crystalline particles face intrinsic structural heterogeneity due to excessively high sintering temperature required to shape micron-sized morphologies─typically over 150 °C above the polycrystalline optimum, leading to rapid electrochemical decay and unsatisfied rate performance that hinder their practical application. Here, we propose a lithium-deficient presintering strategy to synthesize cation-ordered single-crystalline LiNi0.83Co0.12Mn0.05O2 (S-NCM83), effectively minimizing lattice chemical heterogeneity and defect formation. The resulting cation-ordered percolation network enhances the structural stability of the bulk, reduces the energy barrier for Li+ migration, and stabilizes Li+ diffusion pathways. Consequently, S-NCM83 demonstrates significantly improved cycling stability across various operating temperatures and achieves exceptional rate performance, delivering 206 mAh g-1 at 0.1 C and 170 mAh g-1 at 5 C, without requiring surface coatings or doping. This work introduces a universal strategy to address the long-standing structural instability issues in single-crystalline cathodes, paving the way for simplified and scalable approaches to long-life and high-energy lithium-ion batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信