使用大型语言模型从儿科临床报告中提取信息。

IF 7.7
PLOS digital health Pub Date : 2025-07-23 eCollection Date: 2025-07-01 DOI:10.1371/journal.pdig.0000919
Katharina Danhauser, Yingding Wang, Christoph Klein, Uta Tacke, Larissa Mantoan, Laura Aurica Ritter, Florian Heinen, Chiara Nobile, Moritz Tacke
{"title":"使用大型语言模型从儿科临床报告中提取信息。","authors":"Katharina Danhauser, Yingding Wang, Christoph Klein, Uta Tacke, Larissa Mantoan, Laura Aurica Ritter, Florian Heinen, Chiara Nobile, Moritz Tacke","doi":"10.1371/journal.pdig.0000919","DOIUrl":null,"url":null,"abstract":"<p><p>Most medical documentation, including clinical reports, exists in unstructured formats, which hinder efficient data analysis and integration into decision-making systems for patient care and research. Both fields could profit significantly from a reliable automatic analysis of these documents. Current methods for data extraction from these documents are labor-intensive and inflexible. Large Language Models (LLMs) offer a promising alternative for transforming unstructured medical documents into structured data in a flexible manner. This study assesses the performance of large language models (LLMs) in extracting structured data from pediatric clinical reports. Nine different LLMs were assessed. The results demonstrate that both commercial and open-source LLMs can achieve high accuracy in identifying patient-specific information, with top-performing models achieving over 90% accuracy in key tasks.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 7","pages":"e0000919"},"PeriodicalIF":7.7000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286318/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using large language models to extract information from pediatric clinical reports.\",\"authors\":\"Katharina Danhauser, Yingding Wang, Christoph Klein, Uta Tacke, Larissa Mantoan, Laura Aurica Ritter, Florian Heinen, Chiara Nobile, Moritz Tacke\",\"doi\":\"10.1371/journal.pdig.0000919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most medical documentation, including clinical reports, exists in unstructured formats, which hinder efficient data analysis and integration into decision-making systems for patient care and research. Both fields could profit significantly from a reliable automatic analysis of these documents. Current methods for data extraction from these documents are labor-intensive and inflexible. Large Language Models (LLMs) offer a promising alternative for transforming unstructured medical documents into structured data in a flexible manner. This study assesses the performance of large language models (LLMs) in extracting structured data from pediatric clinical reports. Nine different LLMs were assessed. The results demonstrate that both commercial and open-source LLMs can achieve high accuracy in identifying patient-specific information, with top-performing models achieving over 90% accuracy in key tasks.</p>\",\"PeriodicalId\":74465,\"journal\":{\"name\":\"PLOS digital health\",\"volume\":\"4 7\",\"pages\":\"e0000919\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286318/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLOS digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pdig.0000919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数医疗文件,包括临床报告,以非结构化格式存在,这阻碍了有效的数据分析和整合到患者护理和研究的决策系统中。这两个领域都可以从这些文档的可靠自动分析中获益良多。目前从这些文档中提取数据的方法是劳动密集型的,而且不灵活。大型语言模型(llm)为灵活地将非结构化医疗文档转换为结构化数据提供了一种很有前途的替代方案。本研究评估了大型语言模型(llm)从儿科临床报告中提取结构化数据的性能。对9种不同的法学硕士进行了评估。结果表明,商业和开源llm在识别患者特定信息方面都能达到很高的准确率,其中表现最好的模型在关键任务上的准确率达到90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using large language models to extract information from pediatric clinical reports.

Using large language models to extract information from pediatric clinical reports.

Using large language models to extract information from pediatric clinical reports.

Using large language models to extract information from pediatric clinical reports.

Most medical documentation, including clinical reports, exists in unstructured formats, which hinder efficient data analysis and integration into decision-making systems for patient care and research. Both fields could profit significantly from a reliable automatic analysis of these documents. Current methods for data extraction from these documents are labor-intensive and inflexible. Large Language Models (LLMs) offer a promising alternative for transforming unstructured medical documents into structured data in a flexible manner. This study assesses the performance of large language models (LLMs) in extracting structured data from pediatric clinical reports. Nine different LLMs were assessed. The results demonstrate that both commercial and open-source LLMs can achieve high accuracy in identifying patient-specific information, with top-performing models achieving over 90% accuracy in key tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信