Van Lam, Abhijeet Parida, Sarah Dance, Sean Tabaie, Kevin Cleary, Syed Muhammad Anwar
{"title":"使用机器学习分析儿童前臂x光片进行骨折分析。","authors":"Van Lam, Abhijeet Parida, Sarah Dance, Sean Tabaie, Kevin Cleary, Syed Muhammad Anwar","doi":"10.1007/s11548-025-03485-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Forearm fractures constitute a significant proportion of emergency department presentations in pediatric population. The treatment goal is to restore length and alignment between the distal and proximal bone fragments. While immobilization through splinting or casting is enough for non-displaced and minimally displaced fractures. However, moderately or severely displaced fractures often require reduction for realignment. However, appropriate treatment in current practices has challenges due to the lack of resources required for specialized pediatric care leading to delayed and unnecessary transfers between medical centers, which potentially create treatment complications and burdens. The purpose of this study is to build a machine learning model for analyzing forearm fractures to assist clinical centers that lack surgical expertise in pediatric orthopedics.</p><p><strong>Methods: </strong>X-ray scans from 1250 children were curated, preprocessed, and manually annotated at our clinical center. Several machine learning models were fine-tuned using a pretraining strategy leveraging self-supervised learning model with vision transformer backbone. We further employed strategies to identify the most important region related to fractures within the forearm X-ray. The model performance was evaluated with and without region of interest (ROI) detection to find an optimal model for forearm fracture analyses.</p><p><strong>Results: </strong>Our proposed strategy leverages self-supervised pretraining (without labels) followed by supervised fine-tuning (with labels). The fine-tuned model using regions cropped with ROI identification resulted in the highest classification performance with a true-positive rate (TPR) of 0.79, true-negative rate (TNR) of 0.74, AUROC of 0.81, and AUPR of 0.86 when evaluated on the testing data.</p><p><strong>Conclusion: </strong>The results showed the feasibility of using machine learning models in predicting the appropriate treatment for forearm fractures in pediatric cases. With further improvement, the algorithm could potentially be used as a tool to assist non-specialized orthopedic providers in diagnosing and providing treatment.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing pediatric forearm X-rays for fracture analysis using machine learning.\",\"authors\":\"Van Lam, Abhijeet Parida, Sarah Dance, Sean Tabaie, Kevin Cleary, Syed Muhammad Anwar\",\"doi\":\"10.1007/s11548-025-03485-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Forearm fractures constitute a significant proportion of emergency department presentations in pediatric population. The treatment goal is to restore length and alignment between the distal and proximal bone fragments. While immobilization through splinting or casting is enough for non-displaced and minimally displaced fractures. However, moderately or severely displaced fractures often require reduction for realignment. However, appropriate treatment in current practices has challenges due to the lack of resources required for specialized pediatric care leading to delayed and unnecessary transfers between medical centers, which potentially create treatment complications and burdens. The purpose of this study is to build a machine learning model for analyzing forearm fractures to assist clinical centers that lack surgical expertise in pediatric orthopedics.</p><p><strong>Methods: </strong>X-ray scans from 1250 children were curated, preprocessed, and manually annotated at our clinical center. Several machine learning models were fine-tuned using a pretraining strategy leveraging self-supervised learning model with vision transformer backbone. We further employed strategies to identify the most important region related to fractures within the forearm X-ray. The model performance was evaluated with and without region of interest (ROI) detection to find an optimal model for forearm fracture analyses.</p><p><strong>Results: </strong>Our proposed strategy leverages self-supervised pretraining (without labels) followed by supervised fine-tuning (with labels). The fine-tuned model using regions cropped with ROI identification resulted in the highest classification performance with a true-positive rate (TPR) of 0.79, true-negative rate (TNR) of 0.74, AUROC of 0.81, and AUPR of 0.86 when evaluated on the testing data.</p><p><strong>Conclusion: </strong>The results showed the feasibility of using machine learning models in predicting the appropriate treatment for forearm fractures in pediatric cases. With further improvement, the algorithm could potentially be used as a tool to assist non-specialized orthopedic providers in diagnosing and providing treatment.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03485-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03485-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Analyzing pediatric forearm X-rays for fracture analysis using machine learning.
Purpose: Forearm fractures constitute a significant proportion of emergency department presentations in pediatric population. The treatment goal is to restore length and alignment between the distal and proximal bone fragments. While immobilization through splinting or casting is enough for non-displaced and minimally displaced fractures. However, moderately or severely displaced fractures often require reduction for realignment. However, appropriate treatment in current practices has challenges due to the lack of resources required for specialized pediatric care leading to delayed and unnecessary transfers between medical centers, which potentially create treatment complications and burdens. The purpose of this study is to build a machine learning model for analyzing forearm fractures to assist clinical centers that lack surgical expertise in pediatric orthopedics.
Methods: X-ray scans from 1250 children were curated, preprocessed, and manually annotated at our clinical center. Several machine learning models were fine-tuned using a pretraining strategy leveraging self-supervised learning model with vision transformer backbone. We further employed strategies to identify the most important region related to fractures within the forearm X-ray. The model performance was evaluated with and without region of interest (ROI) detection to find an optimal model for forearm fracture analyses.
Results: Our proposed strategy leverages self-supervised pretraining (without labels) followed by supervised fine-tuning (with labels). The fine-tuned model using regions cropped with ROI identification resulted in the highest classification performance with a true-positive rate (TPR) of 0.79, true-negative rate (TNR) of 0.74, AUROC of 0.81, and AUPR of 0.86 when evaluated on the testing data.
Conclusion: The results showed the feasibility of using machine learning models in predicting the appropriate treatment for forearm fractures in pediatric cases. With further improvement, the algorithm could potentially be used as a tool to assist non-specialized orthopedic providers in diagnosing and providing treatment.
期刊介绍:
The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.