利用多位点经颅磁刺激实现精确快速脑刺激的电子-机器人瞄准平台。

IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Renan H Matsuda, Victor H Souza, Thais C Marchetti, Ana M Soto, Olli-Pekka Kahilakoski, Mikael Laine, Heikki Sinisalo, Dubravko Kicic, Pantelis Lioumis, Risto J Ilmoniemi, Oswaldo Baffa
{"title":"利用多位点经颅磁刺激实现精确快速脑刺激的电子-机器人瞄准平台。","authors":"Renan H Matsuda, Victor H Souza, Thais C Marchetti, Ana M Soto, Olli-Pekka Kahilakoski, Mikael Laine, Heikki Sinisalo, Dubravko Kicic, Pantelis Lioumis, Risto J Ilmoniemi, Oswaldo Baffa","doi":"10.1088/1361-6560/adf36e","DOIUrl":null,"url":null,"abstract":"<p><p><i>Background</i>. Multi-locus TMS (mTMS) enables precise electronic control of brain stimulation targeting, eliminating the need for physical coil movement. However, with a small number of coils, the stimulation area is constrained, and manual handling of the coil array is cumbersome. Combining electronic mTMS targeting with robotics enables automated, user-independent, and precise brain stimulation protocols.<i>Objective</i>. To characterize an open-source electronic-robotic mTMS platform for rapid and accurate brain stimulation targeting.<i>Methods</i>. We developed an automated robotic mTMS positioning platform. We used a 5-coil mTMS device coupled to a collaborative robot. The stimulation targeting accuracy of the system was quantified with a TMS characterizer that measures the TMS-induced electric field (<i>E</i>-field) on a model of a spherical cortex. The induced<i>E</i>-field distortion generated by robot coupling was evaluated for each coil. We compared the repositioning accuracy of robotic-electronic system to the conventional manual positioning.<i>Results</i>. Our collaborative-robot-based system offers submillimeter precision and autonomy in positioning mTMS coil sets. The electronic-robotic mTMS platform was approximately 1.8 mm and 1.0° more accurate than the conventional manual positioning. Integrating robotics and mTMS automates brain stimulation procedures, resulting in minimal reliance on user expertise and subjective analysis.<i>Conclusion</i>. Our open-source platform combining rapid mTMS targeting with robotic precision enhances the safety and reproducibility of TMS, enabling more efficient and reliable outcomes than previous techniques.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing an electronic-robotic targeting platform for precise and fast brain stimulation with multi-locus transcranial magnetic stimulation.\",\"authors\":\"Renan H Matsuda, Victor H Souza, Thais C Marchetti, Ana M Soto, Olli-Pekka Kahilakoski, Mikael Laine, Heikki Sinisalo, Dubravko Kicic, Pantelis Lioumis, Risto J Ilmoniemi, Oswaldo Baffa\",\"doi\":\"10.1088/1361-6560/adf36e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Background</i>. Multi-locus TMS (mTMS) enables precise electronic control of brain stimulation targeting, eliminating the need for physical coil movement. However, with a small number of coils, the stimulation area is constrained, and manual handling of the coil array is cumbersome. Combining electronic mTMS targeting with robotics enables automated, user-independent, and precise brain stimulation protocols.<i>Objective</i>. To characterize an open-source electronic-robotic mTMS platform for rapid and accurate brain stimulation targeting.<i>Methods</i>. We developed an automated robotic mTMS positioning platform. We used a 5-coil mTMS device coupled to a collaborative robot. The stimulation targeting accuracy of the system was quantified with a TMS characterizer that measures the TMS-induced electric field (<i>E</i>-field) on a model of a spherical cortex. The induced<i>E</i>-field distortion generated by robot coupling was evaluated for each coil. We compared the repositioning accuracy of robotic-electronic system to the conventional manual positioning.<i>Results</i>. Our collaborative-robot-based system offers submillimeter precision and autonomy in positioning mTMS coil sets. The electronic-robotic mTMS platform was approximately 1.8 mm and 1.0° more accurate than the conventional manual positioning. Integrating robotics and mTMS automates brain stimulation procedures, resulting in minimal reliance on user expertise and subjective analysis.<i>Conclusion</i>. Our open-source platform combining rapid mTMS targeting with robotic precision enhances the safety and reproducibility of TMS, enabling more efficient and reliable outcomes than previous techniques.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/adf36e\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adf36e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:多位点TMS (mTMS)能够精确的电子控制脑刺激目标,消除了物理线圈运动的需要。然而,由于线圈数量少,增产面积有限,手动处理线圈阵列很麻烦。将电子mTMS定位与机器人技术相结合,将实现自动化、用户独立和精确的脑刺激方案。目的:表征一个开源的电子-机器人mTMS平台,用于快速和准确的脑刺激定位。方法:我们开发了一个自动化的机器人mTMS定位平台。用经颅磁刺激表征仪测量了球形皮质模型上经颅磁刺激诱发的电场,从而量化了系统的准确性。我们使用了一个5圈的mTMS设备,配备了一组5个线圈耦合到一个协作机器人上。对机器人耦合产生的感应电场畸变进行了评价。我们通过重新定位mTMS线圈组与机器人和传统手动定位来比较机器人-电子瞄准的精度。结果:我们基于机器人的协作系统在定位mTMS线圈组方面提供了亚毫米精度和自主性。电子-机器人mTMS平台比传统的手动定位精度提高了约1.8 mm和1.0°。集成机器人技术和mTMS使脑刺激过程自动化,从而最大限度地减少对用户专业知识和主观分析的依赖。结论: ;我们的开源平台结合了快速mTMS靶向和机器人精度,提高了脑刺激技术的安全性和可重复性,实现了比以前技术更有效和可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing an electronic-robotic targeting platform for precise and fast brain stimulation with multi-locus transcranial magnetic stimulation.

Background. Multi-locus TMS (mTMS) enables precise electronic control of brain stimulation targeting, eliminating the need for physical coil movement. However, with a small number of coils, the stimulation area is constrained, and manual handling of the coil array is cumbersome. Combining electronic mTMS targeting with robotics enables automated, user-independent, and precise brain stimulation protocols.Objective. To characterize an open-source electronic-robotic mTMS platform for rapid and accurate brain stimulation targeting.Methods. We developed an automated robotic mTMS positioning platform. We used a 5-coil mTMS device coupled to a collaborative robot. The stimulation targeting accuracy of the system was quantified with a TMS characterizer that measures the TMS-induced electric field (E-field) on a model of a spherical cortex. The inducedE-field distortion generated by robot coupling was evaluated for each coil. We compared the repositioning accuracy of robotic-electronic system to the conventional manual positioning.Results. Our collaborative-robot-based system offers submillimeter precision and autonomy in positioning mTMS coil sets. The electronic-robotic mTMS platform was approximately 1.8 mm and 1.0° more accurate than the conventional manual positioning. Integrating robotics and mTMS automates brain stimulation procedures, resulting in minimal reliance on user expertise and subjective analysis.Conclusion. Our open-source platform combining rapid mTMS targeting with robotic precision enhances the safety and reproducibility of TMS, enabling more efficient and reliable outcomes than previous techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信