21三体同型半胱氨酸-蛋氨酸循环代谢和遗传失衡。

IF 2.5 4区 生物学 Q3 CELL BIOLOGY
Physiological genomics Pub Date : 2025-09-01 Epub Date: 2025-07-23 DOI:10.1152/physiolgenomics.00168.2024
Beatrice Vione, Bassam Lajin, Francesca Antonaros, Michela Cicilloni, Francesca Catapano, Chiara Locatelli, Maria Chiara Pelleri, Allison Piovesan, Lorenza Vitale, Gian Luca Pirazzoli, Pierluigi Strippoli, Luigi Tommaso Corvaglia, Giuseppe Ramacieri, Maria Caracausi
{"title":"21三体同型半胱氨酸-蛋氨酸循环代谢和遗传失衡。","authors":"Beatrice Vione, Bassam Lajin, Francesca Antonaros, Michela Cicilloni, Francesca Catapano, Chiara Locatelli, Maria Chiara Pelleri, Allison Piovesan, Lorenza Vitale, Gian Luca Pirazzoli, Pierluigi Strippoli, Luigi Tommaso Corvaglia, Giuseppe Ramacieri, Maria Caracausi","doi":"10.1152/physiolgenomics.00168.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The homocysteine-methionine cycle is involved in the critical human cellular functions, such as proliferation and epigenetic regulation. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolites are synthesized in this metabolic cycle, and their levels are finely regulated to ensure proper functioning of key enzymes controlling the cellular growth and differentiation. SAM and SAH levels were found altered in the plasma of subjects with trisomy 21 (T21), but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. SAM and SAH quantifications were performed in urine samples of 58 subjects with T21 and 48 controls (N) through liquid chromatography with tandem mass spectrometry. SAH resulted slightly more excreted in urine of subjects with T21 (T21/N mean ratio = 1.16, P value = 0.021), although no difference was found in SAM levels. Metabolite urine levels were compared with those previously observed in plasma, in which higher amounts of SAM and SAH were found. In addition, we examined if an association between the levels of SAM and SAH in T21 and the expression levels of genes involved in their production/utilization exists using the transcriptome map of blood samples of T21 and N subjects. The analysis showed overexpression of 44 methyltransferase genes responsible for the conversion of SAM to SAH, of two genes involved in SAH utilization, adenosylhomocysteinase-like 1, adenosylhomocysteinase-like 2, and of one gene involved in SAM utilization, adenosylmethionine decarboxylase 1. These data support the hypothesis that T21 genetic imbalance is responsible for SAM and SAH excess, which may be involved in the T21 phenotypic features.<b>NEW & NOTEWORTHY</b> S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are critical metabolites for the fundamental cellular functions, such as proliferation and epigenetic regulation. For the first time, their levels were quantified in the urine of subjects with trisomy 21 (T21) and compared with euploid controls (N). These dosages were compared with their plasma levels, and the expression of genes involved in SAM and SAH production/utilization was further investigated in the differential blood transcriptome map of T21 versus N samples.</p>","PeriodicalId":20129,"journal":{"name":"Physiological genomics","volume":" ","pages":"566-574"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic and genetic imbalance of the homocysteine-methionine cycle in trisomy 21.\",\"authors\":\"Beatrice Vione, Bassam Lajin, Francesca Antonaros, Michela Cicilloni, Francesca Catapano, Chiara Locatelli, Maria Chiara Pelleri, Allison Piovesan, Lorenza Vitale, Gian Luca Pirazzoli, Pierluigi Strippoli, Luigi Tommaso Corvaglia, Giuseppe Ramacieri, Maria Caracausi\",\"doi\":\"10.1152/physiolgenomics.00168.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The homocysteine-methionine cycle is involved in the critical human cellular functions, such as proliferation and epigenetic regulation. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolites are synthesized in this metabolic cycle, and their levels are finely regulated to ensure proper functioning of key enzymes controlling the cellular growth and differentiation. SAM and SAH levels were found altered in the plasma of subjects with trisomy 21 (T21), but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. SAM and SAH quantifications were performed in urine samples of 58 subjects with T21 and 48 controls (N) through liquid chromatography with tandem mass spectrometry. SAH resulted slightly more excreted in urine of subjects with T21 (T21/N mean ratio = 1.16, P value = 0.021), although no difference was found in SAM levels. Metabolite urine levels were compared with those previously observed in plasma, in which higher amounts of SAM and SAH were found. In addition, we examined if an association between the levels of SAM and SAH in T21 and the expression levels of genes involved in their production/utilization exists using the transcriptome map of blood samples of T21 and N subjects. The analysis showed overexpression of 44 methyltransferase genes responsible for the conversion of SAM to SAH, of two genes involved in SAH utilization, adenosylhomocysteinase-like 1, adenosylhomocysteinase-like 2, and of one gene involved in SAM utilization, adenosylmethionine decarboxylase 1. These data support the hypothesis that T21 genetic imbalance is responsible for SAM and SAH excess, which may be involved in the T21 phenotypic features.<b>NEW & NOTEWORTHY</b> S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are critical metabolites for the fundamental cellular functions, such as proliferation and epigenetic regulation. For the first time, their levels were quantified in the urine of subjects with trisomy 21 (T21) and compared with euploid controls (N). These dosages were compared with their plasma levels, and the expression of genes involved in SAM and SAH production/utilization was further investigated in the differential blood transcriptome map of T21 versus N samples.</p>\",\"PeriodicalId\":20129,\"journal\":{\"name\":\"Physiological genomics\",\"volume\":\" \",\"pages\":\"566-574\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiological genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/physiolgenomics.00168.2024\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/physiolgenomics.00168.2024","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

同型半胱氨酸-蛋氨酸循环参与关键的人类细胞功能,如增殖和表观遗传调控。s -腺苷基蛋氨酸(SAM)和s -腺苷基同型半胱氨酸(SAH)在这种代谢循环中合成,它们的水平受到精细调节,以确保控制细胞生长和分化的关键酶的正常功能。在21三体(T21)患者的血浆中发现SAM和SAH水平发生改变,但这种代谢失调如何影响T21表型的临床表现,此前尚未报道。采用液相色谱-串联质谱法对58例T21和48例对照(N)的尿液样本进行了SAM和SAH的定量分析。T21患者尿中SAH的排泄量略高于T21 (T21/N平均比值=1.16,p值=0.021),而SAM水平无显著差异。尿液代谢物水平与先前在血浆中观察到的水平进行了比较,其中发现了较高含量的SAM和SAH。此外,我们利用T21和N受试者血液样本的转录组图,研究了T21中SAM和SAH水平与参与其产生/利用的基因表达水平之间是否存在关联。分析显示,44个负责将SAM转化为SAH的甲基转移酶基因、2个参与SAH利用的基因(AHCYL1、AHCYL2)和1个参与SAM利用的基因(AMD1)过表达。这些数据支持了T21遗传失衡导致SAM和SAH过量的假设,这可能与T21表型特征有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic and genetic imbalance of the homocysteine-methionine cycle in trisomy 21.

The homocysteine-methionine cycle is involved in the critical human cellular functions, such as proliferation and epigenetic regulation. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) metabolites are synthesized in this metabolic cycle, and their levels are finely regulated to ensure proper functioning of key enzymes controlling the cellular growth and differentiation. SAM and SAH levels were found altered in the plasma of subjects with trisomy 21 (T21), but how this metabolic dysregulation influences the clinical manifestation of T21 phenotype has not been previously described. SAM and SAH quantifications were performed in urine samples of 58 subjects with T21 and 48 controls (N) through liquid chromatography with tandem mass spectrometry. SAH resulted slightly more excreted in urine of subjects with T21 (T21/N mean ratio = 1.16, P value = 0.021), although no difference was found in SAM levels. Metabolite urine levels were compared with those previously observed in plasma, in which higher amounts of SAM and SAH were found. In addition, we examined if an association between the levels of SAM and SAH in T21 and the expression levels of genes involved in their production/utilization exists using the transcriptome map of blood samples of T21 and N subjects. The analysis showed overexpression of 44 methyltransferase genes responsible for the conversion of SAM to SAH, of two genes involved in SAH utilization, adenosylhomocysteinase-like 1, adenosylhomocysteinase-like 2, and of one gene involved in SAM utilization, adenosylmethionine decarboxylase 1. These data support the hypothesis that T21 genetic imbalance is responsible for SAM and SAH excess, which may be involved in the T21 phenotypic features.NEW & NOTEWORTHY S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are critical metabolites for the fundamental cellular functions, such as proliferation and epigenetic regulation. For the first time, their levels were quantified in the urine of subjects with trisomy 21 (T21) and compared with euploid controls (N). These dosages were compared with their plasma levels, and the expression of genes involved in SAM and SAH production/utilization was further investigated in the differential blood transcriptome map of T21 versus N samples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiological genomics
Physiological genomics 生物-生理学
CiteScore
6.10
自引率
0.00%
发文量
46
审稿时长
4-8 weeks
期刊介绍: The Physiological Genomics publishes original papers, reviews and rapid reports in a wide area of research focused on uncovering the links between genes and physiology at all levels of biological organization. Articles on topics ranging from single genes to the whole genome and their links to the physiology of humans, any model organism, organ, tissue or cell are welcome. Areas of interest include complex polygenic traits preferably of importance to human health and gene-function relationships of disease processes. Specifically, the Journal has dedicated Sections focused on genome-wide association studies (GWAS) to function, cardiovascular, renal, metabolic and neurological systems, exercise physiology, pharmacogenomics, clinical, translational and genomics for precision medicine, comparative and statistical genomics and databases. For further details on research themes covered within these Sections, please refer to the descriptions given under each Section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信