Yuepeng Fang , Ce Zhang , Zhijie Yang , Xiangrui Zhao , yongcheng Yin , zhengxin Jin , Pengchong Zhu , Bin Ning
{"title":"泛酸通过JAK2/STAT3途径介导的小胶质细胞炎症抑制促进脊髓损伤后运动功能的恢复。","authors":"Yuepeng Fang , Ce Zhang , Zhijie Yang , Xiangrui Zhao , yongcheng Yin , zhengxin Jin , Pengchong Zhu , Bin Ning","doi":"10.1016/j.neuropharm.2025.110591","DOIUrl":null,"url":null,"abstract":"<div><div>This study employed transcriptome sequencing and targeted metabolomics to delve into the molecular alterations in mouse spinal cords following spinal cord injury (SCI). Notably, a significant depletion of pantothenic acid (PA) was observed in the injured spinal cord, exhibiting an inverse correlation with microglial inflammation and activation. To further elucidate this relationship, experimental interventions using PA were conducted in SCI mouse models. The results demonstrated that PA administration effectively inhibited microglial inflammation via modulation of the JAK2/STAT3 signaling pathway. This inhibition not only mitigated the neuroinflammatory milieu but also fostered an environment conducive to axonal growth and neuronal regeneration. Consequently, SCI mice treated with PA exhibited improved motor function recovery compared to untreated controls. Our findings not only deepen the understanding of the relationship between PA and neuroinflammatory processes in SCI but also highlight the therapeutic potential of PA in promoting neuronal regeneration and functional recovery.</div></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"278 ","pages":"Article 110591"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pantothenic acid-mediated inhibition of microglial inflammation via the JAK2/STAT3 pathway enhances motor function recovery after Spinal cord injury\",\"authors\":\"Yuepeng Fang , Ce Zhang , Zhijie Yang , Xiangrui Zhao , yongcheng Yin , zhengxin Jin , Pengchong Zhu , Bin Ning\",\"doi\":\"10.1016/j.neuropharm.2025.110591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study employed transcriptome sequencing and targeted metabolomics to delve into the molecular alterations in mouse spinal cords following spinal cord injury (SCI). Notably, a significant depletion of pantothenic acid (PA) was observed in the injured spinal cord, exhibiting an inverse correlation with microglial inflammation and activation. To further elucidate this relationship, experimental interventions using PA were conducted in SCI mouse models. The results demonstrated that PA administration effectively inhibited microglial inflammation via modulation of the JAK2/STAT3 signaling pathway. This inhibition not only mitigated the neuroinflammatory milieu but also fostered an environment conducive to axonal growth and neuronal regeneration. Consequently, SCI mice treated with PA exhibited improved motor function recovery compared to untreated controls. Our findings not only deepen the understanding of the relationship between PA and neuroinflammatory processes in SCI but also highlight the therapeutic potential of PA in promoting neuronal regeneration and functional recovery.</div></div>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"278 \",\"pages\":\"Article 110591\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0028390825002990\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0028390825002990","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Pantothenic acid-mediated inhibition of microglial inflammation via the JAK2/STAT3 pathway enhances motor function recovery after Spinal cord injury
This study employed transcriptome sequencing and targeted metabolomics to delve into the molecular alterations in mouse spinal cords following spinal cord injury (SCI). Notably, a significant depletion of pantothenic acid (PA) was observed in the injured spinal cord, exhibiting an inverse correlation with microglial inflammation and activation. To further elucidate this relationship, experimental interventions using PA were conducted in SCI mouse models. The results demonstrated that PA administration effectively inhibited microglial inflammation via modulation of the JAK2/STAT3 signaling pathway. This inhibition not only mitigated the neuroinflammatory milieu but also fostered an environment conducive to axonal growth and neuronal regeneration. Consequently, SCI mice treated with PA exhibited improved motor function recovery compared to untreated controls. Our findings not only deepen the understanding of the relationship between PA and neuroinflammatory processes in SCI but also highlight the therapeutic potential of PA in promoting neuronal regeneration and functional recovery.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).