线粒体自噬中的Sirtuins:线粒体质量的关键看门人。

IF 3.7 2区 生物学 Q3 CELL BIOLOGY
Francisco Alejandro Lagunas-Rangel
{"title":"线粒体自噬中的Sirtuins:线粒体质量的关键看门人。","authors":"Francisco Alejandro Lagunas-Rangel","doi":"10.1007/s11010-025-05358-0","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are highly dynamic organelles essential for cellular energy production. However, they are also a primary source of reactive oxygen species, making them particularly vulnerable to oxidative damage. To preserve mitochondrial integrity, cells employ quality control mechanisms such as mitophagy, a selective form of autophagy that targets damaged or dysfunctional mitochondria for degradation. Among the key regulators of mitophagy are the sirtuins, a family of NAD<sup>+</sup>-dependent deacetylases. SIRT1, SIRT3, and SIRT6 generally promote mitophagy, whereas SIRT2, SIRT4, SIRT5, and SIRT7 often act as negative regulators. Sirtuin-mediated regulation of mitophagy is critical for maintaining cellular homeostasis and is implicated in a variety of physiological and pathological conditions. The aim of this review is to provide an overview focused on describing how sirtuins influence the mitophagy process. It highlights the different molecular mechanisms by which individual members of the sirtuin family modulate mitophagy, either by promoting or suppressing it, depending on the context. In addition, the review explores the relevance of sirtuin-regulated mitophagy in health and disease, emphasizing some conditions under which altered sirtuin activity could be harnessed for therapeutic benefit.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sirtuins in mitophagy: key gatekeepers of mitochondrial quality.\",\"authors\":\"Francisco Alejandro Lagunas-Rangel\",\"doi\":\"10.1007/s11010-025-05358-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are highly dynamic organelles essential for cellular energy production. However, they are also a primary source of reactive oxygen species, making them particularly vulnerable to oxidative damage. To preserve mitochondrial integrity, cells employ quality control mechanisms such as mitophagy, a selective form of autophagy that targets damaged or dysfunctional mitochondria for degradation. Among the key regulators of mitophagy are the sirtuins, a family of NAD<sup>+</sup>-dependent deacetylases. SIRT1, SIRT3, and SIRT6 generally promote mitophagy, whereas SIRT2, SIRT4, SIRT5, and SIRT7 often act as negative regulators. Sirtuin-mediated regulation of mitophagy is critical for maintaining cellular homeostasis and is implicated in a variety of physiological and pathological conditions. The aim of this review is to provide an overview focused on describing how sirtuins influence the mitophagy process. It highlights the different molecular mechanisms by which individual members of the sirtuin family modulate mitophagy, either by promoting or suppressing it, depending on the context. In addition, the review explores the relevance of sirtuin-regulated mitophagy in health and disease, emphasizing some conditions under which altered sirtuin activity could be harnessed for therapeutic benefit.</p>\",\"PeriodicalId\":18724,\"journal\":{\"name\":\"Molecular and Cellular Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11010-025-05358-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05358-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

线粒体是细胞能量生产所必需的高度动态的细胞器。然而,它们也是活性氧的主要来源,这使得它们特别容易受到氧化损伤。为了保持线粒体的完整性,细胞采用质量控制机制,如线粒体自噬,这是一种选择性的自噬形式,针对受损或功能失调的线粒体进行降解。在线粒体自噬的关键调控因子中,sirtuins是一个依赖NAD+的去乙酰化酶家族。SIRT1、SIRT3和SIRT6通常促进有丝分裂,而SIRT2、SIRT4、SIRT5和SIRT7通常作为负调节因子。sirtuin介导的线粒体自噬调节对维持细胞稳态至关重要,并涉及多种生理和病理条件。这篇综述的目的是提供一个概述,重点描述sirtuins如何影响线粒体自噬过程。它强调了不同的分子机制,通过sirtuin家族的个体成员调节有丝分裂,通过促进或抑制它,取决于环境。此外,本文还探讨了sirtuin调节的线粒体自噬在健康和疾病中的相关性,强调了一些条件下sirtuin活性的改变可以用于治疗益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sirtuins in mitophagy: key gatekeepers of mitochondrial quality.

Mitochondria are highly dynamic organelles essential for cellular energy production. However, they are also a primary source of reactive oxygen species, making them particularly vulnerable to oxidative damage. To preserve mitochondrial integrity, cells employ quality control mechanisms such as mitophagy, a selective form of autophagy that targets damaged or dysfunctional mitochondria for degradation. Among the key regulators of mitophagy are the sirtuins, a family of NAD+-dependent deacetylases. SIRT1, SIRT3, and SIRT6 generally promote mitophagy, whereas SIRT2, SIRT4, SIRT5, and SIRT7 often act as negative regulators. Sirtuin-mediated regulation of mitophagy is critical for maintaining cellular homeostasis and is implicated in a variety of physiological and pathological conditions. The aim of this review is to provide an overview focused on describing how sirtuins influence the mitophagy process. It highlights the different molecular mechanisms by which individual members of the sirtuin family modulate mitophagy, either by promoting or suppressing it, depending on the context. In addition, the review explores the relevance of sirtuin-regulated mitophagy in health and disease, emphasizing some conditions under which altered sirtuin activity could be harnessed for therapeutic benefit.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信