Liyun Ma , Jialiang Hui , Guangting He , Zaisheng Qin
{"title":"DNAJC6在急性肾损伤中的作用:通过pgc -1α-介导的线粒体稳态保护肾小管上皮细胞的新靶点","authors":"Liyun Ma , Jialiang Hui , Guangting He , Zaisheng Qin","doi":"10.1016/j.yexcr.2025.114682","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Acute kidney injury (AKI) is a severe clinical syndrome that critically threatens patients' lives and health. It is characterized by complex pathogenesis and lacks effective therapeutic strategies. Mitochondrial homeostasis disruption plays a pivotal role in AKI progression, yet its precise molecular mechanisms remain unclear. This study aimed to investigate the role of DNAJC6 in AKI and its molecular mechanism of mitochondrial homeostasis regulation.</div></div><div><h3>Methods</h3><div>Utilizing cisplatin-induced mouse AKI models and human proximal tubular epithelial cell line HK-2, we employed multiple experimental approaches including bioinformatics analysis, cell transfection, immunohistochemical staining, immunofluorescence, TUNEL assay, and mitochondrial function detection to explore the role and molecular mechanisms of DNAJC6 in AKI.</div></div><div><h3>Results</h3><div>In cisplatin-induced AKI models, renal DNAJC6 expression decreased. DNAJC6 overexpression markedly alleviated kidney injury, reduced cell apoptosis, and attenuated inflammatory responses. Mechanistic investigations revealed that DNAJC6 regulated mitochondrial homeostasis by promoting PGC-1α nuclear translocation. Specifically, DNAJC6 improved mitochondrial respiratory function and reduced mitochondrial oxidative stress levels. Moreover, DNAJC6 enhanced mitochondrial biogenesis and suppressed inflammatory factor expression. Upon PGC-1α knockdown, DNAJC6's protective effects were almost completely abolished, confirming that PGC-1α was a critical molecular mediator.</div></div><div><h3>Conclusion</h3><div>This study elucidated the molecular mechanism by which DNAJC6 protected renal tubular epithelial cells through PGC-1α-mediated mitochondrial homeostasis in AKI. These findings not only provide a novel perspective on AKI pathogenesis but also offer a crucial theoretical foundation for developing potential therapeutic strategies. DNAJC6 emerges as a promising molecular target for AKI treatment.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"450 2","pages":"Article 114682"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNAJC6 in acute kidney injury: A novel target for protecting renal tubular epithelial cells through PGC-1α-mediated mitochondrial homeostasis\",\"authors\":\"Liyun Ma , Jialiang Hui , Guangting He , Zaisheng Qin\",\"doi\":\"10.1016/j.yexcr.2025.114682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Acute kidney injury (AKI) is a severe clinical syndrome that critically threatens patients' lives and health. It is characterized by complex pathogenesis and lacks effective therapeutic strategies. Mitochondrial homeostasis disruption plays a pivotal role in AKI progression, yet its precise molecular mechanisms remain unclear. This study aimed to investigate the role of DNAJC6 in AKI and its molecular mechanism of mitochondrial homeostasis regulation.</div></div><div><h3>Methods</h3><div>Utilizing cisplatin-induced mouse AKI models and human proximal tubular epithelial cell line HK-2, we employed multiple experimental approaches including bioinformatics analysis, cell transfection, immunohistochemical staining, immunofluorescence, TUNEL assay, and mitochondrial function detection to explore the role and molecular mechanisms of DNAJC6 in AKI.</div></div><div><h3>Results</h3><div>In cisplatin-induced AKI models, renal DNAJC6 expression decreased. DNAJC6 overexpression markedly alleviated kidney injury, reduced cell apoptosis, and attenuated inflammatory responses. Mechanistic investigations revealed that DNAJC6 regulated mitochondrial homeostasis by promoting PGC-1α nuclear translocation. Specifically, DNAJC6 improved mitochondrial respiratory function and reduced mitochondrial oxidative stress levels. Moreover, DNAJC6 enhanced mitochondrial biogenesis and suppressed inflammatory factor expression. Upon PGC-1α knockdown, DNAJC6's protective effects were almost completely abolished, confirming that PGC-1α was a critical molecular mediator.</div></div><div><h3>Conclusion</h3><div>This study elucidated the molecular mechanism by which DNAJC6 protected renal tubular epithelial cells through PGC-1α-mediated mitochondrial homeostasis in AKI. These findings not only provide a novel perspective on AKI pathogenesis but also offer a crucial theoretical foundation for developing potential therapeutic strategies. DNAJC6 emerges as a promising molecular target for AKI treatment.</div></div>\",\"PeriodicalId\":12227,\"journal\":{\"name\":\"Experimental cell research\",\"volume\":\"450 2\",\"pages\":\"Article 114682\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental cell research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014482725002824\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725002824","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
DNAJC6 in acute kidney injury: A novel target for protecting renal tubular epithelial cells through PGC-1α-mediated mitochondrial homeostasis
Background
Acute kidney injury (AKI) is a severe clinical syndrome that critically threatens patients' lives and health. It is characterized by complex pathogenesis and lacks effective therapeutic strategies. Mitochondrial homeostasis disruption plays a pivotal role in AKI progression, yet its precise molecular mechanisms remain unclear. This study aimed to investigate the role of DNAJC6 in AKI and its molecular mechanism of mitochondrial homeostasis regulation.
Methods
Utilizing cisplatin-induced mouse AKI models and human proximal tubular epithelial cell line HK-2, we employed multiple experimental approaches including bioinformatics analysis, cell transfection, immunohistochemical staining, immunofluorescence, TUNEL assay, and mitochondrial function detection to explore the role and molecular mechanisms of DNAJC6 in AKI.
Results
In cisplatin-induced AKI models, renal DNAJC6 expression decreased. DNAJC6 overexpression markedly alleviated kidney injury, reduced cell apoptosis, and attenuated inflammatory responses. Mechanistic investigations revealed that DNAJC6 regulated mitochondrial homeostasis by promoting PGC-1α nuclear translocation. Specifically, DNAJC6 improved mitochondrial respiratory function and reduced mitochondrial oxidative stress levels. Moreover, DNAJC6 enhanced mitochondrial biogenesis and suppressed inflammatory factor expression. Upon PGC-1α knockdown, DNAJC6's protective effects were almost completely abolished, confirming that PGC-1α was a critical molecular mediator.
Conclusion
This study elucidated the molecular mechanism by which DNAJC6 protected renal tubular epithelial cells through PGC-1α-mediated mitochondrial homeostasis in AKI. These findings not only provide a novel perspective on AKI pathogenesis but also offer a crucial theoretical foundation for developing potential therapeutic strategies. DNAJC6 emerges as a promising molecular target for AKI treatment.
期刊介绍:
Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.