应用孟德尔随机化和生物信息学分析构建甲状腺癌预后模型并进行泛癌分析。

IF 2.8 4区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Zhenrun Zhan, Zhiyan Weng, Ke Zheng, Jiebin Lin, Sunjie Yan, Ximei Shen
{"title":"应用孟德尔随机化和生物信息学分析构建甲状腺癌预后模型并进行泛癌分析。","authors":"Zhenrun Zhan, Zhiyan Weng, Ke Zheng, Jiebin Lin, Sunjie Yan, Ximei Shen","doi":"10.1007/s12672-025-03222-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aimed to identify causal effects and potential molecular mechanisms of genes associated with THCA development.</p><p><strong>Methods: </strong>Bioinformatic analyses were performed to identify differentially expressed genes (DEGs) associated with THCA. Subsequently, Mendelian randomization (MR) analysis was conducted using large-scale eQTL data and THCA GWAS summary statistics to screen for candidate genes. The intersection of DEGs and MR-derived candidate genes was used to determine DEGs with potential causal associations with thyroid carcinogenesis. Functional enrichment analysis, pathway analysis, and immune cell infiltration profiling were performed. External datasets were used for validation. Additionally, prognostic modeling and pan-cancer analyses of the candidate genes were conducted.</p><p><strong>Results: </strong>IVW-based MR analysis revealed that elevated expression levels of ALOX15B [OR = 1.647, 95% CI (1.120-2.420), P < 0.05], TIAM1 [OR = 1.270, 95% CI (1.001-1.611), P < 0.05], and TMC6 [OR = 1.250, 95% CI (1.021-1.530), P < 0.05] were associated with an increased risk of THCA. Conversely, elevated expression of JUN [OR = 0.795, 95% CI (0.653-0.967), P < 0.05], PAPSS2 [OR = 0.779, 95% CI (0.608-1.000), P < 0.05], and RAP1GAP [OR = 0.895, 95% CI (0.810-0.989), P < 0.05] was associated with a reduced risk. Gene set enrichment analysis (GSEA) indicated that risk genes were enriched in proliferation- and metastasis-related pathways, such as extracellular matrix (ECM)-receptor interaction and cell adhesion molecules (CAMs). Findings from the training set were further validated experimentally and via external datasets. Additionally, candidate risk genes demonstrated associations with the development and progression of multiple tumor types.</p><p><strong>Conclusion: </strong>This study identified ALOX15B, TIAM1, and TMC6 as potential risk genes and JUN, PAPSS2, and RAP1GAP as protective genes in THCA. These genes may serve as promising biomarkers and therapeutic targets for THCA, offering novel insights into precision oncology.</p>","PeriodicalId":11148,"journal":{"name":"Discover. Oncology","volume":"16 1","pages":"1402"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Mendelian randomization and bioinformatic analysis to construct a prognostic model for thyroid cancer and perform pan-cancer analysis.\",\"authors\":\"Zhenrun Zhan, Zhiyan Weng, Ke Zheng, Jiebin Lin, Sunjie Yan, Ximei Shen\",\"doi\":\"10.1007/s12672-025-03222-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study aimed to identify causal effects and potential molecular mechanisms of genes associated with THCA development.</p><p><strong>Methods: </strong>Bioinformatic analyses were performed to identify differentially expressed genes (DEGs) associated with THCA. Subsequently, Mendelian randomization (MR) analysis was conducted using large-scale eQTL data and THCA GWAS summary statistics to screen for candidate genes. The intersection of DEGs and MR-derived candidate genes was used to determine DEGs with potential causal associations with thyroid carcinogenesis. Functional enrichment analysis, pathway analysis, and immune cell infiltration profiling were performed. External datasets were used for validation. Additionally, prognostic modeling and pan-cancer analyses of the candidate genes were conducted.</p><p><strong>Results: </strong>IVW-based MR analysis revealed that elevated expression levels of ALOX15B [OR = 1.647, 95% CI (1.120-2.420), P < 0.05], TIAM1 [OR = 1.270, 95% CI (1.001-1.611), P < 0.05], and TMC6 [OR = 1.250, 95% CI (1.021-1.530), P < 0.05] were associated with an increased risk of THCA. Conversely, elevated expression of JUN [OR = 0.795, 95% CI (0.653-0.967), P < 0.05], PAPSS2 [OR = 0.779, 95% CI (0.608-1.000), P < 0.05], and RAP1GAP [OR = 0.895, 95% CI (0.810-0.989), P < 0.05] was associated with a reduced risk. Gene set enrichment analysis (GSEA) indicated that risk genes were enriched in proliferation- and metastasis-related pathways, such as extracellular matrix (ECM)-receptor interaction and cell adhesion molecules (CAMs). Findings from the training set were further validated experimentally and via external datasets. Additionally, candidate risk genes demonstrated associations with the development and progression of multiple tumor types.</p><p><strong>Conclusion: </strong>This study identified ALOX15B, TIAM1, and TMC6 as potential risk genes and JUN, PAPSS2, and RAP1GAP as protective genes in THCA. These genes may serve as promising biomarkers and therapeutic targets for THCA, offering novel insights into precision oncology.</p>\",\"PeriodicalId\":11148,\"journal\":{\"name\":\"Discover. Oncology\",\"volume\":\"16 1\",\"pages\":\"1402\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover. Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12672-025-03222-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover. Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12672-025-03222-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在确定THCA发病相关基因的因果关系和潜在的分子机制。方法:采用生物信息学方法鉴定与THCA相关的差异表达基因(DEGs)。随后,采用大规模eQTL数据和THCA GWAS汇总统计进行孟德尔随机化(MR)分析,筛选候选基因。deg和mr衍生的候选基因的交集被用来确定与甲状腺癌发生潜在因果关系的deg。功能富集分析、途径分析和免疫细胞浸润分析。使用外部数据集进行验证。此外,对候选基因进行了预后建模和泛癌分析。结果:基于ivw的MR分析显示ALOX15B表达水平升高[OR = 1.647, 95% CI (1.120-2.420), P]。结论:本研究确定ALOX15B、TIAM1、TMC6为THCA的潜在危险基因,JUN、PAPSS2、RAP1GAP为THCA的保护基因。这些基因可能作为THCA的有前途的生物标志物和治疗靶点,为精确肿瘤学提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of Mendelian randomization and bioinformatic analysis to construct a prognostic model for thyroid cancer and perform pan-cancer analysis.

Objective: This study aimed to identify causal effects and potential molecular mechanisms of genes associated with THCA development.

Methods: Bioinformatic analyses were performed to identify differentially expressed genes (DEGs) associated with THCA. Subsequently, Mendelian randomization (MR) analysis was conducted using large-scale eQTL data and THCA GWAS summary statistics to screen for candidate genes. The intersection of DEGs and MR-derived candidate genes was used to determine DEGs with potential causal associations with thyroid carcinogenesis. Functional enrichment analysis, pathway analysis, and immune cell infiltration profiling were performed. External datasets were used for validation. Additionally, prognostic modeling and pan-cancer analyses of the candidate genes were conducted.

Results: IVW-based MR analysis revealed that elevated expression levels of ALOX15B [OR = 1.647, 95% CI (1.120-2.420), P < 0.05], TIAM1 [OR = 1.270, 95% CI (1.001-1.611), P < 0.05], and TMC6 [OR = 1.250, 95% CI (1.021-1.530), P < 0.05] were associated with an increased risk of THCA. Conversely, elevated expression of JUN [OR = 0.795, 95% CI (0.653-0.967), P < 0.05], PAPSS2 [OR = 0.779, 95% CI (0.608-1.000), P < 0.05], and RAP1GAP [OR = 0.895, 95% CI (0.810-0.989), P < 0.05] was associated with a reduced risk. Gene set enrichment analysis (GSEA) indicated that risk genes were enriched in proliferation- and metastasis-related pathways, such as extracellular matrix (ECM)-receptor interaction and cell adhesion molecules (CAMs). Findings from the training set were further validated experimentally and via external datasets. Additionally, candidate risk genes demonstrated associations with the development and progression of multiple tumor types.

Conclusion: This study identified ALOX15B, TIAM1, and TMC6 as potential risk genes and JUN, PAPSS2, and RAP1GAP as protective genes in THCA. These genes may serve as promising biomarkers and therapeutic targets for THCA, offering novel insights into precision oncology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discover. Oncology
Discover. Oncology Medicine-Endocrinology, Diabetes and Metabolism
CiteScore
2.40
自引率
9.10%
发文量
122
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信