植被水域波浪变换建模的物理信息神经网络方法

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Xinyu Huang , Jun Tang , Yongming Shen , Yanlong Zhao , Shuai Hao
{"title":"植被水域波浪变换建模的物理信息神经网络方法","authors":"Xinyu Huang ,&nbsp;Jun Tang ,&nbsp;Yongming Shen ,&nbsp;Yanlong Zhao ,&nbsp;Shuai Hao","doi":"10.1016/j.engappai.2025.111803","DOIUrl":null,"url":null,"abstract":"<div><div>Prediction of wave propagation in vegetated waters is crucial for the design and maintenance of coastal ecological protection systems. In this study, we propose a Physics-Informed Neural Network (PINN) model that incorporates physical constraints from the Boussinesq equations for modeling wave propagation processes in vegetated waters. The results demonstrate that the PINN model effectively captures the evolution of regular wave propagation in rigid, non-submerged vegetated waters. Compared to conventional numerical models, the PINN approach offers a more efficient preprocessing framework while maintaining comparable simulation accuracy with an average Coefficient of Determination (R<sup>2</sup>) of 0.942, an average Root Mean Square Error (RMSE) of 1.84 × 10<sup>−3</sup> m and an average Mean Absolute Error (MAE) of 1.19 × 10<sup>−3</sup> m. Moreover, the parametric inference framework embedded within PINN enables precise determination of the optimal drag coefficient (<em>C</em><sub>d</sub>) through systematic assimilation of experimental measurements. Additionally, the accuracy of both the simulation and the inferred <em>C</em><sub>d</sub> improves as more external data are integrated into the model.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"159 ","pages":"Article 111803"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physically informed neural network approach for modeling wave transformation in vegetated waters\",\"authors\":\"Xinyu Huang ,&nbsp;Jun Tang ,&nbsp;Yongming Shen ,&nbsp;Yanlong Zhao ,&nbsp;Shuai Hao\",\"doi\":\"10.1016/j.engappai.2025.111803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prediction of wave propagation in vegetated waters is crucial for the design and maintenance of coastal ecological protection systems. In this study, we propose a Physics-Informed Neural Network (PINN) model that incorporates physical constraints from the Boussinesq equations for modeling wave propagation processes in vegetated waters. The results demonstrate that the PINN model effectively captures the evolution of regular wave propagation in rigid, non-submerged vegetated waters. Compared to conventional numerical models, the PINN approach offers a more efficient preprocessing framework while maintaining comparable simulation accuracy with an average Coefficient of Determination (R<sup>2</sup>) of 0.942, an average Root Mean Square Error (RMSE) of 1.84 × 10<sup>−3</sup> m and an average Mean Absolute Error (MAE) of 1.19 × 10<sup>−3</sup> m. Moreover, the parametric inference framework embedded within PINN enables precise determination of the optimal drag coefficient (<em>C</em><sub>d</sub>) through systematic assimilation of experimental measurements. Additionally, the accuracy of both the simulation and the inferred <em>C</em><sub>d</sub> improves as more external data are integrated into the model.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"159 \",\"pages\":\"Article 111803\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625018056\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625018056","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

植被水域波浪传播的预测对沿海生态保护系统的设计和维护至关重要。在这项研究中,我们提出了一个物理信息神经网络(PINN)模型,该模型结合了来自Boussinesq方程的物理约束,用于模拟植被水域中的波传播过程。结果表明,PINN模型有效地捕捉了刚性、非淹没植被水域中规则波传播的演变过程。与传统数值模型相比,PINN方法提供了更有效的预处理框架,同时保持了相当的模拟精度,平均决定系数(R2)为0.942,平均均方根误差(RMSE)为1.84 × 10−3 m,平均平均绝对误差(MAE)为1.19 × 10−3 m。此外,嵌入在PINN中的参数推理框架能够通过系统地同化实验测量来精确确定最佳阻力系数(Cd)。此外,随着更多的外部数据集成到模型中,模拟和推断Cd的准确性都得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A physically informed neural network approach for modeling wave transformation in vegetated waters
Prediction of wave propagation in vegetated waters is crucial for the design and maintenance of coastal ecological protection systems. In this study, we propose a Physics-Informed Neural Network (PINN) model that incorporates physical constraints from the Boussinesq equations for modeling wave propagation processes in vegetated waters. The results demonstrate that the PINN model effectively captures the evolution of regular wave propagation in rigid, non-submerged vegetated waters. Compared to conventional numerical models, the PINN approach offers a more efficient preprocessing framework while maintaining comparable simulation accuracy with an average Coefficient of Determination (R2) of 0.942, an average Root Mean Square Error (RMSE) of 1.84 × 10−3 m and an average Mean Absolute Error (MAE) of 1.19 × 10−3 m. Moreover, the parametric inference framework embedded within PINN enables precise determination of the optimal drag coefficient (Cd) through systematic assimilation of experimental measurements. Additionally, the accuracy of both the simulation and the inferred Cd improves as more external data are integrated into the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信