基于模型的超参数化系统实验设计改进贝叶斯参数估计

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Xinyu Cao , Xi Chen , Lorenz T. Biegler
{"title":"基于模型的超参数化系统实验设计改进贝叶斯参数估计","authors":"Xinyu Cao ,&nbsp;Xi Chen ,&nbsp;Lorenz T. Biegler","doi":"10.1016/j.compchemeng.2025.109296","DOIUrl":null,"url":null,"abstract":"<div><div>It is efficient to integrate Bayesian parameter estimation (BPE) with model-based design of experiments (MBDoE) to estimate process parameters. But for over-parameterized models, significant challenges are involved such as the singularity of the Fisher Information Matrix (FIM) and the non-convergence of Markov Chain Monte Carlo (MCMC) methods. To address these challenges, this study introduces a novel approach that integrates BPE and model transformation through singular value decomposition (SVD). Under the proposed structure, the noise distribution not only converges to a stable state but also consistently recovers the true noise variance. Good performance in achieving more accurate model and improved experimental efficiency is validated through two case studies on dynamic batch reactor systems.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"202 ","pages":"Article 109296"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Bayesian parameters estimation with model-based design of experiments for over-parameterized systems\",\"authors\":\"Xinyu Cao ,&nbsp;Xi Chen ,&nbsp;Lorenz T. Biegler\",\"doi\":\"10.1016/j.compchemeng.2025.109296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is efficient to integrate Bayesian parameter estimation (BPE) with model-based design of experiments (MBDoE) to estimate process parameters. But for over-parameterized models, significant challenges are involved such as the singularity of the Fisher Information Matrix (FIM) and the non-convergence of Markov Chain Monte Carlo (MCMC) methods. To address these challenges, this study introduces a novel approach that integrates BPE and model transformation through singular value decomposition (SVD). Under the proposed structure, the noise distribution not only converges to a stable state but also consistently recovers the true noise variance. Good performance in achieving more accurate model and improved experimental efficiency is validated through two case studies on dynamic batch reactor systems.</div></div>\",\"PeriodicalId\":286,\"journal\":{\"name\":\"Computers & Chemical Engineering\",\"volume\":\"202 \",\"pages\":\"Article 109296\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098135425002984\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425002984","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

将贝叶斯参数估计(BPE)与基于模型的实验设计(MBDoE)相结合,可以有效地估计过程参数。但对于过参数化模型,存在Fisher信息矩阵(FIM)的奇异性和马尔可夫链蒙特卡罗(MCMC)方法的不收敛性等问题。为了解决这些挑战,本研究引入了一种通过奇异值分解(SVD)将BPE和模型转换集成在一起的新方法。在该结构下,噪声分布不仅收敛到稳定状态,而且能够持续恢复真实的噪声方差。通过对动态间歇反应器系统的两个实例研究,验证了该方法在提高模型精度和实验效率方面的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Bayesian parameters estimation with model-based design of experiments for over-parameterized systems
It is efficient to integrate Bayesian parameter estimation (BPE) with model-based design of experiments (MBDoE) to estimate process parameters. But for over-parameterized models, significant challenges are involved such as the singularity of the Fisher Information Matrix (FIM) and the non-convergence of Markov Chain Monte Carlo (MCMC) methods. To address these challenges, this study introduces a novel approach that integrates BPE and model transformation through singular value decomposition (SVD). Under the proposed structure, the noise distribution not only converges to a stable state but also consistently recovers the true noise variance. Good performance in achieving more accurate model and improved experimental efficiency is validated through two case studies on dynamic batch reactor systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信