{"title":"具有有界积分曲率的Alexandrov曲面上度量的一致收敛","authors":"Jingyi Chen , Yuxiang Li","doi":"10.1016/j.aim.2025.110436","DOIUrl":null,"url":null,"abstract":"<div><div>We prove uniform convergence of metrics <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> on a closed surface with bounded integral curvature (measure) in the sense of A.D. Alexandrov, under the assumption that the curvature measures <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>=</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> are nonnegative Radon measures converging weakly to measures <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> respectively, and <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> is less than 2<em>π</em> at each point (no cusps). This is the global version of Yu. G. Reshetnyak's well-known result on uniform convergence of metrics on a domain in <span><math><mi>C</mi></math></span>, and answers affirmatively the open question on the metric convergence on a closed surface. We also give an analytic proof of the fact that a (singular) metric <span><math><mi>g</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>u</mi></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with bounded integral curvature on a closed Riemannian surface <span><math><mo>(</mo><mi>Σ</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> can be approximated by smooth metrics in the fixed conformal class <span><math><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span>. Results on a closed surface with varying conformal classes and on complete noncompact surfaces are obtained as well.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110436"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform convergence of metrics on Alexandrov surfaces with bounded integral curvature\",\"authors\":\"Jingyi Chen , Yuxiang Li\",\"doi\":\"10.1016/j.aim.2025.110436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove uniform convergence of metrics <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> on a closed surface with bounded integral curvature (measure) in the sense of A.D. Alexandrov, under the assumption that the curvature measures <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>=</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> are nonnegative Radon measures converging weakly to measures <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> respectively, and <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> is less than 2<em>π</em> at each point (no cusps). This is the global version of Yu. G. Reshetnyak's well-known result on uniform convergence of metrics on a domain in <span><math><mi>C</mi></math></span>, and answers affirmatively the open question on the metric convergence on a closed surface. We also give an analytic proof of the fact that a (singular) metric <span><math><mi>g</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>u</mi></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with bounded integral curvature on a closed Riemannian surface <span><math><mo>(</mo><mi>Σ</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> can be approximated by smooth metrics in the fixed conformal class <span><math><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span>. Results on a closed surface with varying conformal classes and on complete noncompact surfaces are obtained as well.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110436\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003342\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003342","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uniform convergence of metrics on Alexandrov surfaces with bounded integral curvature
We prove uniform convergence of metrics on a closed surface with bounded integral curvature (measure) in the sense of A.D. Alexandrov, under the assumption that the curvature measures , where are nonnegative Radon measures converging weakly to measures respectively, and is less than 2π at each point (no cusps). This is the global version of Yu. G. Reshetnyak's well-known result on uniform convergence of metrics on a domain in , and answers affirmatively the open question on the metric convergence on a closed surface. We also give an analytic proof of the fact that a (singular) metric with bounded integral curvature on a closed Riemannian surface can be approximated by smooth metrics in the fixed conformal class . Results on a closed surface with varying conformal classes and on complete noncompact surfaces are obtained as well.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.