具有有界积分曲率的Alexandrov曲面上度量的一致收敛

IF 1.5 1区 数学 Q1 MATHEMATICS
Jingyi Chen , Yuxiang Li
{"title":"具有有界积分曲率的Alexandrov曲面上度量的一致收敛","authors":"Jingyi Chen ,&nbsp;Yuxiang Li","doi":"10.1016/j.aim.2025.110436","DOIUrl":null,"url":null,"abstract":"<div><div>We prove uniform convergence of metrics <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> on a closed surface with bounded integral curvature (measure) in the sense of A.D. Alexandrov, under the assumption that the curvature measures <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>=</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> are nonnegative Radon measures converging weakly to measures <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> respectively, and <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> is less than 2<em>π</em> at each point (no cusps). This is the global version of Yu. G. Reshetnyak's well-known result on uniform convergence of metrics on a domain in <span><math><mi>C</mi></math></span>, and answers affirmatively the open question on the metric convergence on a closed surface. We also give an analytic proof of the fact that a (singular) metric <span><math><mi>g</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>u</mi></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with bounded integral curvature on a closed Riemannian surface <span><math><mo>(</mo><mi>Σ</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> can be approximated by smooth metrics in the fixed conformal class <span><math><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span>. Results on a closed surface with varying conformal classes and on complete noncompact surfaces are obtained as well.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110436"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniform convergence of metrics on Alexandrov surfaces with bounded integral curvature\",\"authors\":\"Jingyi Chen ,&nbsp;Yuxiang Li\",\"doi\":\"10.1016/j.aim.2025.110436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove uniform convergence of metrics <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> on a closed surface with bounded integral curvature (measure) in the sense of A.D. Alexandrov, under the assumption that the curvature measures <span><math><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>=</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>−</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>, where <span><math><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>μ</mi></mrow><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> are nonnegative Radon measures converging weakly to measures <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>,</mo><msup><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> respectively, and <span><math><msup><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> is less than 2<em>π</em> at each point (no cusps). This is the global version of Yu. G. Reshetnyak's well-known result on uniform convergence of metrics on a domain in <span><math><mi>C</mi></math></span>, and answers affirmatively the open question on the metric convergence on a closed surface. We also give an analytic proof of the fact that a (singular) metric <span><math><mi>g</mi><mo>=</mo><msup><mrow><mi>e</mi></mrow><mrow><mn>2</mn><mi>u</mi></mrow></msup><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> with bounded integral curvature on a closed Riemannian surface <span><math><mo>(</mo><mi>Σ</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>)</mo></math></span> can be approximated by smooth metrics in the fixed conformal class <span><math><mo>[</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>]</mo></math></span>. Results on a closed surface with varying conformal classes and on complete noncompact surfaces are obtained as well.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110436\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003342\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003342","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在曲率测度Kgk=μk1−μk2,其中μk1、μk2为非负Radon测度,分别弱收敛于测度μ1、μ2,且μ1在每个点(无顶点)均小于2π的前提下,证明了测度gk在ad . Alexandrov意义上的一致收敛性。这是全球版的禹。G. Reshetnyak关于C域上度量收敛性的著名结果,肯定地回答了关于闭曲面上度量收敛性的开放问题。我们也给出了在封闭黎曼曲面(Σ,g0)上具有有界积分曲率的(奇异)度量g=e2ug0可以用固定共形类[g0]中的光滑度量近似的解析证明。在具有不同保形类的封闭曲面和完全非紧曲面上也得到了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform convergence of metrics on Alexandrov surfaces with bounded integral curvature
We prove uniform convergence of metrics gk on a closed surface with bounded integral curvature (measure) in the sense of A.D. Alexandrov, under the assumption that the curvature measures Kgk=μk1μk2, where μk1,μk2 are nonnegative Radon measures converging weakly to measures μ1,μ2 respectively, and μ1 is less than 2π at each point (no cusps). This is the global version of Yu. G. Reshetnyak's well-known result on uniform convergence of metrics on a domain in C, and answers affirmatively the open question on the metric convergence on a closed surface. We also give an analytic proof of the fact that a (singular) metric g=e2ug0 with bounded integral curvature on a closed Riemannian surface (Σ,g0) can be approximated by smooth metrics in the fixed conformal class [g0]. Results on a closed surface with varying conformal classes and on complete noncompact surfaces are obtained as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信