{"title":"分数阶Sobolev不等式稳定性的最优渐近下界和对数-Sobolev不等式在球上的全局稳定性","authors":"Lu Chen , Guozhen Lu , Hanli Tang","doi":"10.1016/j.aim.2025.110438","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish the optimal asymptotic lower bound for the stability of fractional Sobolev inequality:<span><span><span>(0.1)</span><span><math><msubsup><mrow><mo>‖</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>U</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>n</mi></mrow></msub><msubsup><mrow><mo>‖</mo><mi>U</mi><mo>‖</mo></mrow><mrow><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≥</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>U</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is the set of maximizers of the fractional Sobolev inequality of order <em>s</em>, <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> denotes the optimal lower bound of stability. We prove that the optimal lower bound <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> behaves asymptotically at the order of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> when <span><math><mi>n</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> for any fixed <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This extends the work by Dolbeault-Esteban-Figalli-Frank-Loss <span><span>[22]</span></span> on the stability of the first order Sobolev inequality (i.e., <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span>) and quantify the asymptotic behavior for lower bound of stability of fractional Sobolev inequality established by the current author's previous work in <span><span>[15]</span></span> in the case of <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Moreover, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> behaves asymptotically at the order of <em>s</em> when <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span> for any given dimension <em>n</em>. (See <span><span>Theorem 1.1</span></span> for these asymptotic estimates.) As an important application of this asymptotic estimate as <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span>, we derive the global stability for the log-Sobolev inequality on the sphere established by Beckner in <span><span>[3]</span></span>, <span><span>[5]</span></span> with the optimal asymptotic lower bound on the sphere through the stability of fractional Sobolev inequalities with optimal asymptotic lower bound and the end-point differentiation method (see <span><span>Theorem 1.6</span></span>). This sharpens the earlier work by the authors in <span><span>[14]</span></span> where only the local stability for the log-Sobolev inequality on the sphere was proved. We also obtain the asymptotically optimal lower bound for the Hardy-Littlewood-Sobolev inequality when <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span> for fixed dimension <em>n</em> and <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> for fixed <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> (see <span><span>Theorem 1.4</span></span> and the subsequent <span><span>Remark 1.5</span></span>).</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110438"},"PeriodicalIF":1.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal asymptotic lower bound for stability of fractional Sobolev inequality and the global stability of log-Sobolev inequality on the sphere\",\"authors\":\"Lu Chen , Guozhen Lu , Hanli Tang\",\"doi\":\"10.1016/j.aim.2025.110438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we establish the optimal asymptotic lower bound for the stability of fractional Sobolev inequality:<span><span><span>(0.1)</span><span><math><msubsup><mrow><mo>‖</mo><msup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>s</mi><mo>/</mo><mn>2</mn></mrow></msup><mi>U</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>−</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>s</mi><mo>,</mo><mi>n</mi></mrow></msub><msubsup><mrow><mo>‖</mo><mi>U</mi><mo>‖</mo></mrow><mrow><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>2</mn><mi>s</mi></mrow></mfrac></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≥</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>U</mi><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> is the set of maximizers of the fractional Sobolev inequality of order <em>s</em>, <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> denotes the optimal lower bound of stability. We prove that the optimal lower bound <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> behaves asymptotically at the order of <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></math></span> when <span><math><mi>n</mi><mo>→</mo><mo>+</mo><mo>∞</mo></math></span> for any fixed <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. This extends the work by Dolbeault-Esteban-Figalli-Frank-Loss <span><span>[22]</span></span> on the stability of the first order Sobolev inequality (i.e., <span><math><mi>s</mi><mo>=</mo><mn>1</mn></math></span>) and quantify the asymptotic behavior for lower bound of stability of fractional Sobolev inequality established by the current author's previous work in <span><span>[15]</span></span> in the case of <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Moreover, <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>s</mi></mrow></msub></math></span> behaves asymptotically at the order of <em>s</em> when <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span> for any given dimension <em>n</em>. (See <span><span>Theorem 1.1</span></span> for these asymptotic estimates.) As an important application of this asymptotic estimate as <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span>, we derive the global stability for the log-Sobolev inequality on the sphere established by Beckner in <span><span>[3]</span></span>, <span><span>[5]</span></span> with the optimal asymptotic lower bound on the sphere through the stability of fractional Sobolev inequalities with optimal asymptotic lower bound and the end-point differentiation method (see <span><span>Theorem 1.6</span></span>). This sharpens the earlier work by the authors in <span><span>[14]</span></span> where only the local stability for the log-Sobolev inequality on the sphere was proved. We also obtain the asymptotically optimal lower bound for the Hardy-Littlewood-Sobolev inequality when <span><math><mi>s</mi><mo>→</mo><mn>0</mn></math></span> for fixed dimension <em>n</em> and <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span> for fixed <span><math><mi>s</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> (see <span><span>Theorem 1.4</span></span> and the subsequent <span><span>Remark 1.5</span></span>).</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"479 \",\"pages\":\"Article 110438\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825003366\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825003366","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文建立了分数阶Sobolev不等式稳定性的最优渐近下界:(0.1)‖(−Δ)s/2U‖22−Ss,n‖U‖2nn−2s2≥Cn,sd2(U,Ms),其中Ms为s阶分数阶Sobolev不等式的极大值集合,s∈(0,1),Cn,s为稳定性的最优下界。证明了对于任意固定的s∈(0,1),当n→+∞时,最优下界Cn,s在1n阶上渐近。推广了dolbeault - esteban - figallii - frank - loss[22]关于一阶Sobolev不等式(即s=1)稳定性的工作,量化了本文作者在[15]中对s∈(0,1)的情况下分数阶Sobolev不等式稳定性下界的渐近行为。此外,对于任何给定的维数n,当s→0时,Cn,s在s阶上表现为渐近(关于这些渐近估计见定理1.1)。作为s→0渐近估计的一个重要应用,我们通过分数阶Sobolev不等式的最优渐近下界的稳定性和端点微分法,推导了Beckner在[3],[5]上建立的球面上具有最优渐近下界的log-Sobolev不等式的全局稳定性(见定理1.6)。这加强了作者在[14]中早期的工作,在[14]中只证明了log-Sobolev不等式在球上的局部稳定性。我们也得到了Hardy-Littlewood-Sobolev不等式的渐近最优下界,当固定维数n为s→0,当固定维数s∈(0,1)为n→∞时(见定理1.4和随后的注释1.5)。
Optimal asymptotic lower bound for stability of fractional Sobolev inequality and the global stability of log-Sobolev inequality on the sphere
In this paper, we establish the optimal asymptotic lower bound for the stability of fractional Sobolev inequality:(0.1) where is the set of maximizers of the fractional Sobolev inequality of order s, and denotes the optimal lower bound of stability. We prove that the optimal lower bound behaves asymptotically at the order of when for any fixed . This extends the work by Dolbeault-Esteban-Figalli-Frank-Loss [22] on the stability of the first order Sobolev inequality (i.e., ) and quantify the asymptotic behavior for lower bound of stability of fractional Sobolev inequality established by the current author's previous work in [15] in the case of . Moreover, behaves asymptotically at the order of s when for any given dimension n. (See Theorem 1.1 for these asymptotic estimates.) As an important application of this asymptotic estimate as , we derive the global stability for the log-Sobolev inequality on the sphere established by Beckner in [3], [5] with the optimal asymptotic lower bound on the sphere through the stability of fractional Sobolev inequalities with optimal asymptotic lower bound and the end-point differentiation method (see Theorem 1.6). This sharpens the earlier work by the authors in [14] where only the local stability for the log-Sobolev inequality on the sphere was proved. We also obtain the asymptotically optimal lower bound for the Hardy-Littlewood-Sobolev inequality when for fixed dimension n and for fixed (see Theorem 1.4 and the subsequent Remark 1.5).
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.