{"title":"加权图边缘扰动下阻力距离和Kirchhoff指数的解析研究","authors":"Muhammad Shoaib Sardar","doi":"10.1016/j.chaos.2025.116897","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a connected, undirected graph with unit edge weights. Let <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> be the graph obtained by perturbing the weight of a single edge <span><math><mrow><mrow><mo>[</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>]</mo></mrow><mo>∈</mo><mi>E</mi></mrow></math></span> by an amount <span><math><mrow><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, so that its new weight becomes <span><math><mrow><mn>1</mn><mo>+</mo><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, while all other edge weights remain unchanged. In this paper, we analyze the effect of such localized edge perturbations on the resistance distance and Kirchhoff index of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>, using matrix perturbation theory and the Woodbury identity. We derive closed-form expressions for the perturbed resistance distance <span><math><msub><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> and perturbed Kirchhoff index <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, providing analytical insight into the global impact of local structural changes. Through extremal analysis on complete and path graphs, we establish tight bounds for <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> under single-edge perturbations and derive first-order sensitivity approximations to quantify the influence of individual edge weights. Building on this foundation, we propose the Max-Kirchhoff Impact Edge Detection (MKIED) technique to locate edges that have the greatest influence on the Kirchhoff index. Experiments on real-world networks, including Facebook, the Karate Club, and Les Miserables, illustrate the method’s efficacy in identifying structurally significant edges, frequently correlating to bridges or hub-hub connections. The results underscore the Kirchhoff index as an effective instrument for assessing structural vulnerability in complex networks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116897"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical study of resistance distance and Kirchhoff index under edge perturbations in weighted graphs\",\"authors\":\"Muhammad Shoaib Sardar\",\"doi\":\"10.1016/j.chaos.2025.116897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a connected, undirected graph with unit edge weights. Let <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> be the graph obtained by perturbing the weight of a single edge <span><math><mrow><mrow><mo>[</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>]</mo></mrow><mo>∈</mo><mi>E</mi></mrow></math></span> by an amount <span><math><mrow><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, so that its new weight becomes <span><math><mrow><mn>1</mn><mo>+</mo><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, while all other edge weights remain unchanged. In this paper, we analyze the effect of such localized edge perturbations on the resistance distance and Kirchhoff index of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>, using matrix perturbation theory and the Woodbury identity. We derive closed-form expressions for the perturbed resistance distance <span><math><msub><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> and perturbed Kirchhoff index <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, providing analytical insight into the global impact of local structural changes. Through extremal analysis on complete and path graphs, we establish tight bounds for <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> under single-edge perturbations and derive first-order sensitivity approximations to quantify the influence of individual edge weights. Building on this foundation, we propose the Max-Kirchhoff Impact Edge Detection (MKIED) technique to locate edges that have the greatest influence on the Kirchhoff index. Experiments on real-world networks, including Facebook, the Karate Club, and Les Miserables, illustrate the method’s efficacy in identifying structurally significant edges, frequently correlating to bridges or hub-hub connections. The results underscore the Kirchhoff index as an effective instrument for assessing structural vulnerability in complex networks.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116897\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009105\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009105","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Analytical study of resistance distance and Kirchhoff index under edge perturbations in weighted graphs
Let be a connected, undirected graph with unit edge weights. Let be the graph obtained by perturbing the weight of a single edge by an amount , so that its new weight becomes , while all other edge weights remain unchanged. In this paper, we analyze the effect of such localized edge perturbations on the resistance distance and Kirchhoff index of , using matrix perturbation theory and the Woodbury identity. We derive closed-form expressions for the perturbed resistance distance and perturbed Kirchhoff index , providing analytical insight into the global impact of local structural changes. Through extremal analysis on complete and path graphs, we establish tight bounds for under single-edge perturbations and derive first-order sensitivity approximations to quantify the influence of individual edge weights. Building on this foundation, we propose the Max-Kirchhoff Impact Edge Detection (MKIED) technique to locate edges that have the greatest influence on the Kirchhoff index. Experiments on real-world networks, including Facebook, the Karate Club, and Les Miserables, illustrate the method’s efficacy in identifying structurally significant edges, frequently correlating to bridges or hub-hub connections. The results underscore the Kirchhoff index as an effective instrument for assessing structural vulnerability in complex networks.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.