加权图边缘扰动下阻力距离和Kirchhoff指数的解析研究

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Muhammad Shoaib Sardar
{"title":"加权图边缘扰动下阻力距离和Kirchhoff指数的解析研究","authors":"Muhammad Shoaib Sardar","doi":"10.1016/j.chaos.2025.116897","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a connected, undirected graph with unit edge weights. Let <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> be the graph obtained by perturbing the weight of a single edge <span><math><mrow><mrow><mo>[</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>]</mo></mrow><mo>∈</mo><mi>E</mi></mrow></math></span> by an amount <span><math><mrow><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, so that its new weight becomes <span><math><mrow><mn>1</mn><mo>+</mo><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, while all other edge weights remain unchanged. In this paper, we analyze the effect of such localized edge perturbations on the resistance distance and Kirchhoff index of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>, using matrix perturbation theory and the Woodbury identity. We derive closed-form expressions for the perturbed resistance distance <span><math><msub><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> and perturbed Kirchhoff index <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, providing analytical insight into the global impact of local structural changes. Through extremal analysis on complete and path graphs, we establish tight bounds for <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> under single-edge perturbations and derive first-order sensitivity approximations to quantify the influence of individual edge weights. Building on this foundation, we propose the Max-Kirchhoff Impact Edge Detection (MKIED) technique to locate edges that have the greatest influence on the Kirchhoff index. Experiments on real-world networks, including Facebook, the Karate Club, and Les Miserables, illustrate the method’s efficacy in identifying structurally significant edges, frequently correlating to bridges or hub-hub connections. The results underscore the Kirchhoff index as an effective instrument for assessing structural vulnerability in complex networks.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116897"},"PeriodicalIF":5.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical study of resistance distance and Kirchhoff index under edge perturbations in weighted graphs\",\"authors\":\"Muhammad Shoaib Sardar\",\"doi\":\"10.1016/j.chaos.2025.116897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> be a connected, undirected graph with unit edge weights. Let <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span> be the graph obtained by perturbing the weight of a single edge <span><math><mrow><mrow><mo>[</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>]</mo></mrow><mo>∈</mo><mi>E</mi></mrow></math></span> by an amount <span><math><mrow><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, so that its new weight becomes <span><math><mrow><mn>1</mn><mo>+</mo><mi>Δ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>u</mi><mi>v</mi></mrow></msub></mrow></math></span>, while all other edge weights remain unchanged. In this paper, we analyze the effect of such localized edge perturbations on the resistance distance and Kirchhoff index of <span><math><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover></math></span>, using matrix perturbation theory and the Woodbury identity. We derive closed-form expressions for the perturbed resistance distance <span><math><msub><mrow><mover><mrow><mi>r</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> and perturbed Kirchhoff index <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, providing analytical insight into the global impact of local structural changes. Through extremal analysis on complete and path graphs, we establish tight bounds for <span><math><mrow><mi>Kf</mi><mrow><mo>(</mo><mover><mrow><mi>G</mi></mrow><mrow><mo>̃</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> under single-edge perturbations and derive first-order sensitivity approximations to quantify the influence of individual edge weights. Building on this foundation, we propose the Max-Kirchhoff Impact Edge Detection (MKIED) technique to locate edges that have the greatest influence on the Kirchhoff index. Experiments on real-world networks, including Facebook, the Karate Club, and Les Miserables, illustrate the method’s efficacy in identifying structurally significant edges, frequently correlating to bridges or hub-hub connections. The results underscore the Kirchhoff index as an effective instrument for assessing structural vulnerability in complex networks.</div></div>\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"199 \",\"pages\":\"Article 116897\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0960077925009105\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925009105","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

设G=(V,E)是一个边权为单位的连通无向图。设G /为对一条边[u,v]∈E的权值进行Δwuv的扰动得到的图,使其新权值变为1+Δwuv,而其他所有边的权值保持不变。本文利用矩阵摄动理论和Woodbury恒等式,分析了这种局域边缘摄动对G的阻力距离和Kirchhoff指数的影响。我们推导了扰动阻力距离r / ij和扰动基尔霍夫指数Kf(G /)的封闭表达式,为局部结构变化的全局影响提供了分析见解。通过对完整图和路径图的极值分析,我们建立了单边扰动下Kf(G)的紧界,并推导了一阶灵敏度近似来量化单个边权的影响。在此基础上,我们提出了Max-Kirchhoff冲击边缘检测(MKIED)技术来定位对Kirchhoff指数影响最大的边缘。在现实世界网络上的实验,包括Facebook、空手道俱乐部和悲惨世界,证明了该方法在识别结构上重要的边缘方面的有效性,这些边缘通常与桥梁或中心-中心连接相关。结果强调基尔霍夫指数是评估复杂网络结构脆弱性的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analytical study of resistance distance and Kirchhoff index under edge perturbations in weighted graphs
Let G=(V,E) be a connected, undirected graph with unit edge weights. Let G̃ be the graph obtained by perturbing the weight of a single edge [u,v]E by an amount Δwuv, so that its new weight becomes 1+Δwuv, while all other edge weights remain unchanged. In this paper, we analyze the effect of such localized edge perturbations on the resistance distance and Kirchhoff index of G̃, using matrix perturbation theory and the Woodbury identity. We derive closed-form expressions for the perturbed resistance distance r̃ij and perturbed Kirchhoff index Kf(G̃), providing analytical insight into the global impact of local structural changes. Through extremal analysis on complete and path graphs, we establish tight bounds for Kf(G̃) under single-edge perturbations and derive first-order sensitivity approximations to quantify the influence of individual edge weights. Building on this foundation, we propose the Max-Kirchhoff Impact Edge Detection (MKIED) technique to locate edges that have the greatest influence on the Kirchhoff index. Experiments on real-world networks, including Facebook, the Karate Club, and Les Miserables, illustrate the method’s efficacy in identifying structurally significant edges, frequently correlating to bridges or hub-hub connections. The results underscore the Kirchhoff index as an effective instrument for assessing structural vulnerability in complex networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信