基于条件生成对抗网络的大角度会聚束电子衍射图

IF 2.1 3区 工程技术 Q2 MICROSCOPY
Joseph J. Webb , Richard Beanland , Rudolf A. Römer
{"title":"基于条件生成对抗网络的大角度会聚束电子衍射图","authors":"Joseph J. Webb ,&nbsp;Richard Beanland ,&nbsp;Rudolf A. Römer","doi":"10.1016/j.ultramic.2025.114198","DOIUrl":null,"url":null,"abstract":"<div><div>We show how generative machine learning can be used for the rapid computation of strongly dynamical electron diffraction directly from crystal structures, specifically in large-angle convergent-beam electron diffraction (LACBED) patterns. We find that a conditional generative adversarial network can learn the connection between the projected potential from a cubic crystal’s unit cell and the corresponding LACBED pattern. Our model can generate diffraction patterns on a GPU many orders of magnitude faster than existing direct simulation methods. Furthermore, our approach can accurately retrieve the projected potential from diffraction patterns, opening a new approach for the inverse problem of determining crystal structure.</div></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"277 ","pages":"Article 114198"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-angle convergent-beam electron diffraction patterns via conditional generative adversarial networks\",\"authors\":\"Joseph J. Webb ,&nbsp;Richard Beanland ,&nbsp;Rudolf A. Römer\",\"doi\":\"10.1016/j.ultramic.2025.114198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We show how generative machine learning can be used for the rapid computation of strongly dynamical electron diffraction directly from crystal structures, specifically in large-angle convergent-beam electron diffraction (LACBED) patterns. We find that a conditional generative adversarial network can learn the connection between the projected potential from a cubic crystal’s unit cell and the corresponding LACBED pattern. Our model can generate diffraction patterns on a GPU many orders of magnitude faster than existing direct simulation methods. Furthermore, our approach can accurately retrieve the projected potential from diffraction patterns, opening a new approach for the inverse problem of determining crystal structure.</div></div>\",\"PeriodicalId\":23439,\"journal\":{\"name\":\"Ultramicroscopy\",\"volume\":\"277 \",\"pages\":\"Article 114198\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultramicroscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304399125000968\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399125000968","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了生成式机器学习如何直接从晶体结构中用于强动态电子衍射的快速计算,特别是在大角度会聚束电子衍射(LACBED)模式中。我们发现一个条件生成对抗网络可以学习立方晶体的单元胞的投影电位与相应的LACBED模式之间的联系。我们的模型可以在GPU上生成衍射图形,比现有的直接模拟方法快许多个数量级。此外,我们的方法可以准确地从衍射图中提取投影势,为确定晶体结构的反问题开辟了一条新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-angle convergent-beam electron diffraction patterns via conditional generative adversarial networks
We show how generative machine learning can be used for the rapid computation of strongly dynamical electron diffraction directly from crystal structures, specifically in large-angle convergent-beam electron diffraction (LACBED) patterns. We find that a conditional generative adversarial network can learn the connection between the projected potential from a cubic crystal’s unit cell and the corresponding LACBED pattern. Our model can generate diffraction patterns on a GPU many orders of magnitude faster than existing direct simulation methods. Furthermore, our approach can accurately retrieve the projected potential from diffraction patterns, opening a new approach for the inverse problem of determining crystal structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信