调节宿主细胞受体蛋白hACE2的功能变构抑制SARS-CoV-2的病毒侵入

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Pratyush Pani, Saroj Kumar Panda and Malay Kumar Rana
{"title":"调节宿主细胞受体蛋白hACE2的功能变构抑制SARS-CoV-2的病毒侵入","authors":"Pratyush Pani, Saroj Kumar Panda and Malay Kumar Rana","doi":"10.1039/D5CP01740H","DOIUrl":null,"url":null,"abstract":"<p >The emergence of new SARS-CoV-2 Omicron sub-variants with faster transmission has necessitated accelerated scientific efforts to confront a possible health emergency. Conventional anti-CoV strategies targeting viral proteins often fail due to frequent mutations. Thus, targeting the conserved host receptor angiotensin-converting enzyme 2 (hACE2), which mediates viral entry <em>via</em> interaction with the spike protein's receptor-binding domain (RBD), presents a rational therapeutic alternative. This, however, requires identification of non-orthosteric hACE2 sites and suitable modulators that retain hACE2's physiological function. Using blind docking and unbiased molecular dynamics (MD) simulations, we identify a novel allosteric site on hACE2, distant from its peptidase domain. Simulations show that an allosteric modulator can disrupt hACE2–RBD interaction by perturbing the spike RBD while stabilizing hACE2's binding to its natural substrate, angiotensin II (AngII). Pharmacophore modeling and high-throughput virtual screening (HTVS) of large databases yield more effective modulators. These allosteric binders downregulate hACE2–RBD interaction across three SARS-CoV-2 variants of concern (Beta, Delta, and Omicron). Dynamic residue network analysis reveals the shortest suboptimal pathway through which the allosteric signal is transmitted to the RBD. We believe that the identified site and mechanistic insight offer a promising basis for developing variant-agnostic SARS-CoV-2 therapeutics.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 35","pages":" 18326-18340"},"PeriodicalIF":2.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp01740h?page=search","citationCount":"0","resultStr":"{\"title\":\"Modulating functional allostery of the host-cell receptor protein hACE2 to inhibit viral entry of SARS-CoV-2\",\"authors\":\"Pratyush Pani, Saroj Kumar Panda and Malay Kumar Rana\",\"doi\":\"10.1039/D5CP01740H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The emergence of new SARS-CoV-2 Omicron sub-variants with faster transmission has necessitated accelerated scientific efforts to confront a possible health emergency. Conventional anti-CoV strategies targeting viral proteins often fail due to frequent mutations. Thus, targeting the conserved host receptor angiotensin-converting enzyme 2 (hACE2), which mediates viral entry <em>via</em> interaction with the spike protein's receptor-binding domain (RBD), presents a rational therapeutic alternative. This, however, requires identification of non-orthosteric hACE2 sites and suitable modulators that retain hACE2's physiological function. Using blind docking and unbiased molecular dynamics (MD) simulations, we identify a novel allosteric site on hACE2, distant from its peptidase domain. Simulations show that an allosteric modulator can disrupt hACE2–RBD interaction by perturbing the spike RBD while stabilizing hACE2's binding to its natural substrate, angiotensin II (AngII). Pharmacophore modeling and high-throughput virtual screening (HTVS) of large databases yield more effective modulators. These allosteric binders downregulate hACE2–RBD interaction across three SARS-CoV-2 variants of concern (Beta, Delta, and Omicron). Dynamic residue network analysis reveals the shortest suboptimal pathway through which the allosteric signal is transmitted to the RBD. We believe that the identified site and mechanistic insight offer a promising basis for developing variant-agnostic SARS-CoV-2 therapeutics.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 35\",\"pages\":\" 18326-18340\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/cp/d5cp01740h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp01740h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp01740h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着传播速度加快的新型SARS-CoV-2组粒亚变体的出现,有必要加快科学探索,以应对另一场可能出现的卫生突发事件。针对病毒蛋白的常见抗冠状病毒治疗策略在应对病毒突变导致的进化方面效率低下。因此,保守的宿主细胞受体血管紧张素转换酶2 (hACE2)作为靶点,通过与病毒S蛋白受体结合域(RBD)的相互作用为病毒进入铺平了道路,可能是抑制所有病毒进入的基本治疗策略。然而,这需要寻找hACE2的未知非正位位点及其合适的结合物(调节剂),通过分子洞察力阐明治疗效果,变异特异性效应,以及保留hACE2的自然功能以避免对手。利用盲对接和无偏分子动力学(MD)模拟,我们发现了一个远离肽酶结构域(PD)的hACE2的新变构位点。详尽的模拟表明,一种变弹性调节剂不仅通过干扰SARS-CoV-2的刺突RBD抑制hACE2-RBD相互作用,而且还增强了hACE2与其天然八肽底物血管紧张素II (AngII)的结合。大型数据库的药效团建模和高通量虚拟筛选(HTVS)产生了更有效的调节剂。变构结合物可以下调hACE2与三种关注的COVID-19变体(VOC)的RBD的相互作用:β、δ和omicron。动态残差网络分析识别了变构信号从变构位点传递到RBD的最短次优途径。我们欢迎提出的变构位点和机制细节,以开发针对SARS-CoV-2变体的更有效治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Modulating functional allostery of the host-cell receptor protein hACE2 to inhibit viral entry of SARS-CoV-2

Modulating functional allostery of the host-cell receptor protein hACE2 to inhibit viral entry of SARS-CoV-2

The emergence of new SARS-CoV-2 Omicron sub-variants with faster transmission has necessitated accelerated scientific efforts to confront a possible health emergency. Conventional anti-CoV strategies targeting viral proteins often fail due to frequent mutations. Thus, targeting the conserved host receptor angiotensin-converting enzyme 2 (hACE2), which mediates viral entry via interaction with the spike protein's receptor-binding domain (RBD), presents a rational therapeutic alternative. This, however, requires identification of non-orthosteric hACE2 sites and suitable modulators that retain hACE2's physiological function. Using blind docking and unbiased molecular dynamics (MD) simulations, we identify a novel allosteric site on hACE2, distant from its peptidase domain. Simulations show that an allosteric modulator can disrupt hACE2–RBD interaction by perturbing the spike RBD while stabilizing hACE2's binding to its natural substrate, angiotensin II (AngII). Pharmacophore modeling and high-throughput virtual screening (HTVS) of large databases yield more effective modulators. These allosteric binders downregulate hACE2–RBD interaction across three SARS-CoV-2 variants of concern (Beta, Delta, and Omicron). Dynamic residue network analysis reveals the shortest suboptimal pathway through which the allosteric signal is transmitted to the RBD. We believe that the identified site and mechanistic insight offer a promising basis for developing variant-agnostic SARS-CoV-2 therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信