Ben Li, Badr Aljabri, Derek Beaton, Leen Al-Omran, Mohamad A. Hussain, Douglas S. Lee, Duminda N. Wijeysundera, Ori D. Rotstein, Charles de Mestral, Muhammad Mamdani, Mohammed Al-Omran
{"title":"利用机器学习预测血管内主动脉髂血管重建术后的预后","authors":"Ben Li, Badr Aljabri, Derek Beaton, Leen Al-Omran, Mohamad A. Hussain, Douglas S. Lee, Duminda N. Wijeysundera, Ori D. Rotstein, Charles de Mestral, Muhammad Mamdani, Mohammed Al-Omran","doi":"10.1038/s41746-025-01865-y","DOIUrl":null,"url":null,"abstract":"<p>Endovascular aortoiliac revascularization is a common treatment option for peripheral artery disease that carries non-negligible risks. Outcome prediction tools may support clinical decision-making but remain limited. We developed machine learning algorithms that predict 30-day post-procedural outcomes. The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent endovascular aortoiliac revascularization between 2011–2021. Input features included 37 pre-operative demographic/clinical variables. The primary outcome was 30-day post-procedural major adverse limb event (MALE) or death. Data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using pre-operative features. Overall, 6601 patients were included, and 30-day MALE/death occurred in 470 (7.1%) individuals. The best-performing model was XGBoost, achieving an AUROC (95% CI) of 0.94 (0.93–0.95). In comparison, logistic regression had an AUROC (95% CI) of 0.74 (0.73–0.76). The XGBoost model accurately predicted 30-day post-procedural outcomes, performing better than logistic regression.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"14 1","pages":""},"PeriodicalIF":15.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting outcomes following endovascular aortoiliac revascularization using machine learning\",\"authors\":\"Ben Li, Badr Aljabri, Derek Beaton, Leen Al-Omran, Mohamad A. Hussain, Douglas S. Lee, Duminda N. Wijeysundera, Ori D. Rotstein, Charles de Mestral, Muhammad Mamdani, Mohammed Al-Omran\",\"doi\":\"10.1038/s41746-025-01865-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Endovascular aortoiliac revascularization is a common treatment option for peripheral artery disease that carries non-negligible risks. Outcome prediction tools may support clinical decision-making but remain limited. We developed machine learning algorithms that predict 30-day post-procedural outcomes. The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent endovascular aortoiliac revascularization between 2011–2021. Input features included 37 pre-operative demographic/clinical variables. The primary outcome was 30-day post-procedural major adverse limb event (MALE) or death. Data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using pre-operative features. Overall, 6601 patients were included, and 30-day MALE/death occurred in 470 (7.1%) individuals. The best-performing model was XGBoost, achieving an AUROC (95% CI) of 0.94 (0.93–0.95). In comparison, logistic regression had an AUROC (95% CI) of 0.74 (0.73–0.76). The XGBoost model accurately predicted 30-day post-procedural outcomes, performing better than logistic regression.</p>\",\"PeriodicalId\":19349,\"journal\":{\"name\":\"NPJ Digital Medicine\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":15.1000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Digital Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41746-025-01865-y\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01865-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Predicting outcomes following endovascular aortoiliac revascularization using machine learning
Endovascular aortoiliac revascularization is a common treatment option for peripheral artery disease that carries non-negligible risks. Outcome prediction tools may support clinical decision-making but remain limited. We developed machine learning algorithms that predict 30-day post-procedural outcomes. The National Surgical Quality Improvement Program targeted vascular database was used to identify patients who underwent endovascular aortoiliac revascularization between 2011–2021. Input features included 37 pre-operative demographic/clinical variables. The primary outcome was 30-day post-procedural major adverse limb event (MALE) or death. Data were split into training (70%) and test (30%) sets. Using 10-fold cross-validation, 6 machine learning models were trained using pre-operative features. Overall, 6601 patients were included, and 30-day MALE/death occurred in 470 (7.1%) individuals. The best-performing model was XGBoost, achieving an AUROC (95% CI) of 0.94 (0.93–0.95). In comparison, logistic regression had an AUROC (95% CI) of 0.74 (0.73–0.76). The XGBoost model accurately predicted 30-day post-procedural outcomes, performing better than logistic regression.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.