{"title":"SEC16B作为葡萄糖稳态新调控因子的鉴定。","authors":"Ruo-Xin Zhang,An-Qi Li,Xin-Yuan Zhao,Bei Wang,Zhi-Can Yang,Zhi-Ying Liu,Chen Ji,Yan-Chuan Shi,G Gregory Neely,Qiao-Ping Wang","doi":"10.1007/s00125-025-06501-8","DOIUrl":null,"url":null,"abstract":"AIMS/HYPOTHESIS\r\nGlucose homeostasis, essential for metabolic health, requires coordinated insulin and glucagon activity to maintain blood glucose balance. Dysregulation of glucose homeostasis causes hyperglycaemia and glucose intolerance, hallmark features of type 2 diabetes. While SEC16 homologue B (SEC16B), an endoplasmic reticulum export factor, has been linked to obesity, type 2 diabetes and lipid metabolism, its role in glucose regulation remains poorly defined. This study aims to investigate SEC16B's contribution to glucose homeostasis by systematically dissecting its conserved physiological mechanisms across species.\r\n\r\nMETHODS\r\nTo interrogate SEC16B's role, we combined Drosophila genetics (RNA interference-mediated dSec16 knockdown) with murine models (Sec16b deletion) under standard or high-fat diet conditions. Glucose and insulin tolerance tests assessed glucose homeostasis. Mechanistic insights into beta cell dysfunction were derived from immunostaining, glucose-stimulated insulin secretion assays and RNA-seq profiling of murine pancreatic islets.\r\n\r\nRESULTS\r\nBoth disruption of dSec16 in Drosophila and Sec16b deletion in mice triggered glucose intolerance under standard diet conditions, recapitulating conserved metabolic dysfunction. In addition, Sec16b loss impaired glycaemic control in mice fed a high-fat diet. Mechanistically, Sec16b deficiency impairs insulin secretion by downregulating cholinergic signalling and compromising intracellular Ca2+ influx in pancreatic beta cells.\r\n\r\nCONCLUSIONS/INTERPRETATION\r\nOur study reveals SEC16B, a genome-wide association study-identified obesity risk gene, as an evolutionarily conserved regulator of glucose homeostasis. By linking SEC16B to cholinergic-driven insulin secretion and calcium dynamics, we resolve a mechanistic gap in beta cell dysfunction and metabolic disease. This finding provides novel insights into the mechanisms underlying glucose homeostasis and may enhance our understanding of potential treatments for metabolic diseases.","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":"699 1","pages":""},"PeriodicalIF":10.2000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of SEC16B as a novel regulator of glucose homeostasis.\",\"authors\":\"Ruo-Xin Zhang,An-Qi Li,Xin-Yuan Zhao,Bei Wang,Zhi-Can Yang,Zhi-Ying Liu,Chen Ji,Yan-Chuan Shi,G Gregory Neely,Qiao-Ping Wang\",\"doi\":\"10.1007/s00125-025-06501-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AIMS/HYPOTHESIS\\r\\nGlucose homeostasis, essential for metabolic health, requires coordinated insulin and glucagon activity to maintain blood glucose balance. Dysregulation of glucose homeostasis causes hyperglycaemia and glucose intolerance, hallmark features of type 2 diabetes. While SEC16 homologue B (SEC16B), an endoplasmic reticulum export factor, has been linked to obesity, type 2 diabetes and lipid metabolism, its role in glucose regulation remains poorly defined. This study aims to investigate SEC16B's contribution to glucose homeostasis by systematically dissecting its conserved physiological mechanisms across species.\\r\\n\\r\\nMETHODS\\r\\nTo interrogate SEC16B's role, we combined Drosophila genetics (RNA interference-mediated dSec16 knockdown) with murine models (Sec16b deletion) under standard or high-fat diet conditions. Glucose and insulin tolerance tests assessed glucose homeostasis. Mechanistic insights into beta cell dysfunction were derived from immunostaining, glucose-stimulated insulin secretion assays and RNA-seq profiling of murine pancreatic islets.\\r\\n\\r\\nRESULTS\\r\\nBoth disruption of dSec16 in Drosophila and Sec16b deletion in mice triggered glucose intolerance under standard diet conditions, recapitulating conserved metabolic dysfunction. In addition, Sec16b loss impaired glycaemic control in mice fed a high-fat diet. Mechanistically, Sec16b deficiency impairs insulin secretion by downregulating cholinergic signalling and compromising intracellular Ca2+ influx in pancreatic beta cells.\\r\\n\\r\\nCONCLUSIONS/INTERPRETATION\\r\\nOur study reveals SEC16B, a genome-wide association study-identified obesity risk gene, as an evolutionarily conserved regulator of glucose homeostasis. By linking SEC16B to cholinergic-driven insulin secretion and calcium dynamics, we resolve a mechanistic gap in beta cell dysfunction and metabolic disease. This finding provides novel insights into the mechanisms underlying glucose homeostasis and may enhance our understanding of potential treatments for metabolic diseases.\",\"PeriodicalId\":11164,\"journal\":{\"name\":\"Diabetologia\",\"volume\":\"699 1\",\"pages\":\"\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00125-025-06501-8\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-025-06501-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Identification of SEC16B as a novel regulator of glucose homeostasis.
AIMS/HYPOTHESIS
Glucose homeostasis, essential for metabolic health, requires coordinated insulin and glucagon activity to maintain blood glucose balance. Dysregulation of glucose homeostasis causes hyperglycaemia and glucose intolerance, hallmark features of type 2 diabetes. While SEC16 homologue B (SEC16B), an endoplasmic reticulum export factor, has been linked to obesity, type 2 diabetes and lipid metabolism, its role in glucose regulation remains poorly defined. This study aims to investigate SEC16B's contribution to glucose homeostasis by systematically dissecting its conserved physiological mechanisms across species.
METHODS
To interrogate SEC16B's role, we combined Drosophila genetics (RNA interference-mediated dSec16 knockdown) with murine models (Sec16b deletion) under standard or high-fat diet conditions. Glucose and insulin tolerance tests assessed glucose homeostasis. Mechanistic insights into beta cell dysfunction were derived from immunostaining, glucose-stimulated insulin secretion assays and RNA-seq profiling of murine pancreatic islets.
RESULTS
Both disruption of dSec16 in Drosophila and Sec16b deletion in mice triggered glucose intolerance under standard diet conditions, recapitulating conserved metabolic dysfunction. In addition, Sec16b loss impaired glycaemic control in mice fed a high-fat diet. Mechanistically, Sec16b deficiency impairs insulin secretion by downregulating cholinergic signalling and compromising intracellular Ca2+ influx in pancreatic beta cells.
CONCLUSIONS/INTERPRETATION
Our study reveals SEC16B, a genome-wide association study-identified obesity risk gene, as an evolutionarily conserved regulator of glucose homeostasis. By linking SEC16B to cholinergic-driven insulin secretion and calcium dynamics, we resolve a mechanistic gap in beta cell dysfunction and metabolic disease. This finding provides novel insights into the mechanisms underlying glucose homeostasis and may enhance our understanding of potential treatments for metabolic diseases.
期刊介绍:
Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.