Tianyi Jiang,Qiang Yao,Zeyu Wang,Xiaoze Bao,Shanqing Yu,Qi Xuan
{"title":"基于专家引导的分子性质预测子结构信息瓶颈。","authors":"Tianyi Jiang,Qiang Yao,Zeyu Wang,Xiaoze Bao,Shanqing Yu,Qi Xuan","doi":"10.1021/acs.jcim.5c00456","DOIUrl":null,"url":null,"abstract":"Molecular property prediction plays a crucial role in cheminformatics, yet existing methods are constrained by data scarcity and molecular structural heterogeneity. The Mixture of Experts (MoE) framework adopts a divide-and-conquer approach by partitioning the input space and employing expert models. However, current methods primarily rely on scaffold or atomic-level information, often neglecting fine-grained features such as functional groups. Moreover, existing MoE models lack effective mechanisms to filter redundant and noisy information, limiting prediction accuracy and generalization. To address these challenges, we propose a novel Expert-Guided Substructure Information Bottleneck (ESIB-Mol) framework that integrates MoE learning with the Information Bottleneck (IB) principle to optimize molecular representation learning. ESIB-Mol employs substructure-specific experts to focus on key molecular scaffolds and functional groups, which play a crucial role in determining molecular properties such as bioactivity and pharmacokinetics. Meanwhile, the IB principle is leveraged to filter out redundant and irrelevant information, thereby enhancing prediction accuracy and interpretability. Additionally, a dynamic gating mechanism adaptively assigns molecules to the most relevant expert, optimizing computational efficiency. Extensive experiments on benchmark data sets demonstrate the effectiveness of ESIB-Mol, highlighting its superior performance in molecular property prediction.","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":"71 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Expert-Guided Substructure Information Bottleneck for Molecular Property Prediction.\",\"authors\":\"Tianyi Jiang,Qiang Yao,Zeyu Wang,Xiaoze Bao,Shanqing Yu,Qi Xuan\",\"doi\":\"10.1021/acs.jcim.5c00456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular property prediction plays a crucial role in cheminformatics, yet existing methods are constrained by data scarcity and molecular structural heterogeneity. The Mixture of Experts (MoE) framework adopts a divide-and-conquer approach by partitioning the input space and employing expert models. However, current methods primarily rely on scaffold or atomic-level information, often neglecting fine-grained features such as functional groups. Moreover, existing MoE models lack effective mechanisms to filter redundant and noisy information, limiting prediction accuracy and generalization. To address these challenges, we propose a novel Expert-Guided Substructure Information Bottleneck (ESIB-Mol) framework that integrates MoE learning with the Information Bottleneck (IB) principle to optimize molecular representation learning. ESIB-Mol employs substructure-specific experts to focus on key molecular scaffolds and functional groups, which play a crucial role in determining molecular properties such as bioactivity and pharmacokinetics. Meanwhile, the IB principle is leveraged to filter out redundant and irrelevant information, thereby enhancing prediction accuracy and interpretability. Additionally, a dynamic gating mechanism adaptively assigns molecules to the most relevant expert, optimizing computational efficiency. Extensive experiments on benchmark data sets demonstrate the effectiveness of ESIB-Mol, highlighting its superior performance in molecular property prediction.\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.5c00456\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.5c00456","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Expert-Guided Substructure Information Bottleneck for Molecular Property Prediction.
Molecular property prediction plays a crucial role in cheminformatics, yet existing methods are constrained by data scarcity and molecular structural heterogeneity. The Mixture of Experts (MoE) framework adopts a divide-and-conquer approach by partitioning the input space and employing expert models. However, current methods primarily rely on scaffold or atomic-level information, often neglecting fine-grained features such as functional groups. Moreover, existing MoE models lack effective mechanisms to filter redundant and noisy information, limiting prediction accuracy and generalization. To address these challenges, we propose a novel Expert-Guided Substructure Information Bottleneck (ESIB-Mol) framework that integrates MoE learning with the Information Bottleneck (IB) principle to optimize molecular representation learning. ESIB-Mol employs substructure-specific experts to focus on key molecular scaffolds and functional groups, which play a crucial role in determining molecular properties such as bioactivity and pharmacokinetics. Meanwhile, the IB principle is leveraged to filter out redundant and irrelevant information, thereby enhancing prediction accuracy and interpretability. Additionally, a dynamic gating mechanism adaptively assigns molecules to the most relevant expert, optimizing computational efficiency. Extensive experiments on benchmark data sets demonstrate the effectiveness of ESIB-Mol, highlighting its superior performance in molecular property prediction.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.