基于自适应Gannet优化算法的图像去噪去镶嵌混合深度学习模型。

IF 1.6
John Peter K, SylajaVallee Narayan S R, Muthuvairavan Pillai N, Predeep Kumar S P
{"title":"基于自适应Gannet优化算法的图像去噪去镶嵌混合深度学习模型。","authors":"John Peter K, SylajaVallee Narayan S R, Muthuvairavan Pillai N, Predeep Kumar S P","doi":"10.1080/0954898X.2025.2529299","DOIUrl":null,"url":null,"abstract":"<p><p>Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image reconstruction quality. The proposed model consists of three main steps: detail layer extraction, image de-noising using an Efficient Generative Adversarial Network (E-GAN), and de-mosaicking using an Adaptive Gannet-based Residual DenseNet (AG_DenseResNet). The publicly available Kodak dataset is utilized for the evaluation of the proposed model. The results show that the proposed outperforms conventional methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Learned Perceptual Image Patch Similarity (LPIPS) and acquired the values of 53.93, 0.98, 2.76, and 0.23, respectively.</p>","PeriodicalId":520718,"journal":{"name":"Network (Bristol, England)","volume":" ","pages":"1-27"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid deep learning model for image de-noising and de-mosaicking with adaptive Gannet optimization algorithm.\",\"authors\":\"John Peter K, SylajaVallee Narayan S R, Muthuvairavan Pillai N, Predeep Kumar S P\",\"doi\":\"10.1080/0954898X.2025.2529299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image reconstruction quality. The proposed model consists of three main steps: detail layer extraction, image de-noising using an Efficient Generative Adversarial Network (E-GAN), and de-mosaicking using an Adaptive Gannet-based Residual DenseNet (AG_DenseResNet). The publicly available Kodak dataset is utilized for the evaluation of the proposed model. The results show that the proposed outperforms conventional methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Learned Perceptual Image Patch Similarity (LPIPS) and acquired the values of 53.93, 0.98, 2.76, and 0.23, respectively.</p>\",\"PeriodicalId\":520718,\"journal\":{\"name\":\"Network (Bristol, England)\",\"volume\":\" \",\"pages\":\"1-27\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network (Bristol, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2025.2529299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2529299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像重建是艺术修复、医学图像处理和农业等各种应用的关键步骤,但由于噪声和马赛克人工制品,它面临着挑战。本研究提出了一种新的图像去噪和去拼接方法,以提高图像重建质量。该模型包括三个主要步骤:细节层提取,使用高效生成对抗网络(E-GAN)进行图像去噪,使用基于自适应甘尼特的残差密度网(AG_DenseResNet)进行去马赛克。公开可用的柯达数据集被用于评估所提议的模型。结果表明,该方法在峰值信噪比(PSNR)、结构相似度指数(SSIM)、均方误差(MSE)和学习感知图像斑块相似度(LPIPS)方面均优于传统方法,分别获得53.93、0.98、2.76和0.23的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid deep learning model for image de-noising and de-mosaicking with adaptive Gannet optimization algorithm.

Image reconstruction is a critical step in various applications, such as art restoration, medical image processing, and agriculture, but it faces challenges due to noise and mosaic artefacts. In this research, a novel approach is introduced for de-noising and de-mosaicking images to enhance image reconstruction quality. The proposed model consists of three main steps: detail layer extraction, image de-noising using an Efficient Generative Adversarial Network (E-GAN), and de-mosaicking using an Adaptive Gannet-based Residual DenseNet (AG_DenseResNet). The publicly available Kodak dataset is utilized for the evaluation of the proposed model. The results show that the proposed outperforms conventional methods in terms of Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Learned Perceptual Image Patch Similarity (LPIPS) and acquired the values of 53.93, 0.98, 2.76, and 0.23, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信