低密度地区计算机断层扫描值-电子密度/物理密度转换表差异对计算剂量的影响。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Mia Nomura, Shunsuke Goto, Mizuki Yoshioka, Yuiko Kato, Ayaka Tsunoda, Kunio Nishioka, Yoshinori Tanabe
{"title":"低密度地区计算机断层扫描值-电子密度/物理密度转换表差异对计算剂量的影响。","authors":"Mia Nomura, Shunsuke Goto, Mizuki Yoshioka, Yuiko Kato, Ayaka Tsunoda, Kunio Nishioka, Yoshinori Tanabe","doi":"10.1007/s13246-025-01611-4","DOIUrl":null,"url":null,"abstract":"<p><p>In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and - 900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was < 0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at - 900 HU had a maximum difference between facilities of > 5%, and the dose difference corresponding to an LN-300 lung CT value difference of > 20 HU was > 1% at a field size of 2 × 2 cm<sup>2</sup>. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas.\",\"authors\":\"Mia Nomura, Shunsuke Goto, Mizuki Yoshioka, Yuiko Kato, Ayaka Tsunoda, Kunio Nishioka, Yoshinori Tanabe\",\"doi\":\"10.1007/s13246-025-01611-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and - 900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was < 0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at - 900 HU had a maximum difference between facilities of > 5%, and the dose difference corresponding to an LN-300 lung CT value difference of > 20 HU was > 1% at a field size of 2 × 2 cm<sup>2</sup>. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01611-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01611-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在放射治疗计划中,不同的CT扫描仪对未知物质的低密度区域的计算机断层扫描(CT)值的外推可能不同,从而导致不同的计算剂量。我们评估了使用8台CT扫描仪计算的百分比深度剂量(PDD)的差异。采用LN-300肺和- 900 HU制作异质虚拟幻象。对于两种类型的虚拟幻影,采用五种能量、两种辐照场大小和两种计算算法(各向异性解析算法和acros XB)计算中轴上的PDD。对于LN-300肺,8台CT扫描仪在电子密度(ED)为0.29时的最大CT值差为51 HU,而外推ED为0.05时的最大CT值差为8.8 HU。LN-300肺CT值显示不同CT扫描仪的CT- ed /物理密度数据差异不大。LN-300肺部PDD的点深在CT扫描仪之间的差异为5%,在场大小为2 × 2 cm2的情况下,LN-300肺部CT值差bb0 20 HU对应的剂量差为> 1%。研究结果表明,在CT- ed转换表中没有已知材料的低密度区域,即使使用相同的CT- ed虚辐射治疗计划和治疗设备,由于CT值的校准,计算出的剂量在设施之间存在剂量差异的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of differences in computed tomography value-electron density/physical density conversion tables on calculate dose in low-density areas.

In radiotherapy treatment planning, the extrapolation of computed tomography (CT) values for low-density areas without known materials may differ between CT scanners, resulting in different calculated doses. We evaluated the differences in the percentage depth dose (PDD) calculated using eight CT scanners. Heterogeneous virtual phantoms were created using LN-300 lung and - 900 HU. For the two types of virtual phantoms, the PDD on the central axis was calculated using five energies, two irradiation field sizes, and two calculation algorithms (the anisotropic analytical algorithm and Acuros XB). For the LN-300 lung, the maximum CT value difference between the eight CT scanners was 51 HU for an electron density (ED) of 0.29 and 8.8 HU for an extrapolated ED of 0.05. The LN-300 lung CT values showed little variation in the CT-ED/physical density data among CT scanners. The difference in the point depth for the PDD in the LN-300 lung between the CT scanners was < 0.5% for all energies and calculation algorithms. Using Acuros XB, the PDD at - 900 HU had a maximum difference between facilities of > 5%, and the dose difference corresponding to an LN-300 lung CT value difference of > 20 HU was > 1% at a field size of 2 × 2 cm2. The study findings suggest that the calculated dose of low-density regions without known materials in the CT-ED conversion table introduces a risk of dose differences between facilities because of the calibration of the CT values, even when the same CT-ED phantom radiation treatment planning and treatment devices are used.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信