基于注意机制的deep-CNN和Bi-LSTM混合模型增强心电诊断。

IF 2 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Gaurav Kumar, Neeraj Varshney
{"title":"基于注意机制的deep-CNN和Bi-LSTM混合模型增强心电诊断。","authors":"Gaurav Kumar, Neeraj Varshney","doi":"10.1007/s13246-025-01612-3","DOIUrl":null,"url":null,"abstract":"<p><p>According to the World Health Organization (WHO), 17.9 million people die yearly from cardiovascular Diseases (CVDs), including heart attacks. Cardiovascular diseases, including heart attack, kill 32% of people globally. Current approaches struggle with electrocardiogram (ECG) signal variability, causing diagnosing errors. The adoption of automated and accurate models for heart disease detection is lacking since conventional methods rely on human analysis, which is time-consuming and error-prone. This work covers the crucial topic of heart disease diagnosis, especially ECG data analysis for cardiovascular disease detection. The integration of the Deep-Convolutional Neural Network (Deep-CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) model with an Attention Mechanism enhances the accuracy and reliability of heart disease categorisation. The Deep-CNN component efficiently extracts features from capture spatial linkages, while the Bi-LSTM layers handle temporal dependencies to identify patient health patterns over time. The model is evaluated on 303 patient records with 14 clinical characteristics from the University of California, Irvine (UCI) Cleveland Heart Disease dataset. The suggested technique has 97.23% accuracy, 97.72% recall, precision, and 96.90% F1 score. These findings show that the proposed architecture improves diagnostic performance more than boosting ensemble approaches and hybrid models.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid deep-CNN and Bi-LSTM model with attention mechanism for enhanced ECG-based heart disease diagnosis.\",\"authors\":\"Gaurav Kumar, Neeraj Varshney\",\"doi\":\"10.1007/s13246-025-01612-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>According to the World Health Organization (WHO), 17.9 million people die yearly from cardiovascular Diseases (CVDs), including heart attacks. Cardiovascular diseases, including heart attack, kill 32% of people globally. Current approaches struggle with electrocardiogram (ECG) signal variability, causing diagnosing errors. The adoption of automated and accurate models for heart disease detection is lacking since conventional methods rely on human analysis, which is time-consuming and error-prone. This work covers the crucial topic of heart disease diagnosis, especially ECG data analysis for cardiovascular disease detection. The integration of the Deep-Convolutional Neural Network (Deep-CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) model with an Attention Mechanism enhances the accuracy and reliability of heart disease categorisation. The Deep-CNN component efficiently extracts features from capture spatial linkages, while the Bi-LSTM layers handle temporal dependencies to identify patient health patterns over time. The model is evaluated on 303 patient records with 14 clinical characteristics from the University of California, Irvine (UCI) Cleveland Heart Disease dataset. The suggested technique has 97.23% accuracy, 97.72% recall, precision, and 96.90% F1 score. These findings show that the proposed architecture improves diagnostic performance more than boosting ensemble approaches and hybrid models.</p>\",\"PeriodicalId\":48490,\"journal\":{\"name\":\"Physical and Engineering Sciences in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical and Engineering Sciences in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13246-025-01612-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01612-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

据世界卫生组织(WHO)称,每年有1790万人死于心血管疾病(cvd),包括心脏病发作。包括心脏病发作在内的心血管疾病导致全球32%的人死亡。目前的方法与心电图(ECG)信号的可变性作斗争,导致诊断错误。由于传统方法依赖于人工分析,这既耗时又容易出错,因此缺乏采用自动化和准确的心脏病检测模型。这项工作涵盖了心脏病诊断的关键主题,特别是心电图数据分析用于心血管疾病检测。基于注意机制的深度卷积神经网络(Deep-CNN)与双向长短期记忆(Bi-LSTM)模型的集成提高了心脏病分类的准确性和可靠性。Deep-CNN组件有效地从捕获的空间联系中提取特征,而Bi-LSTM层处理时间依赖性以识别患者随时间的健康模式。该模型对来自加州大学欧文分校(UCI)克利夫兰心脏病数据集的303例患者记录的14项临床特征进行了评估。该方法的准确率为97.23%,查全率为97.72%,查准率为96.90%。这些发现表明,所提出的体系结构比集成方法和混合模型更能提高诊断性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid deep-CNN and Bi-LSTM model with attention mechanism for enhanced ECG-based heart disease diagnosis.

According to the World Health Organization (WHO), 17.9 million people die yearly from cardiovascular Diseases (CVDs), including heart attacks. Cardiovascular diseases, including heart attack, kill 32% of people globally. Current approaches struggle with electrocardiogram (ECG) signal variability, causing diagnosing errors. The adoption of automated and accurate models for heart disease detection is lacking since conventional methods rely on human analysis, which is time-consuming and error-prone. This work covers the crucial topic of heart disease diagnosis, especially ECG data analysis for cardiovascular disease detection. The integration of the Deep-Convolutional Neural Network (Deep-CNN) and Bidirectional Long Short-Term Memory (Bi-LSTM) model with an Attention Mechanism enhances the accuracy and reliability of heart disease categorisation. The Deep-CNN component efficiently extracts features from capture spatial linkages, while the Bi-LSTM layers handle temporal dependencies to identify patient health patterns over time. The model is evaluated on 303 patient records with 14 clinical characteristics from the University of California, Irvine (UCI) Cleveland Heart Disease dataset. The suggested technique has 97.23% accuracy, 97.72% recall, precision, and 96.90% F1 score. These findings show that the proposed architecture improves diagnostic performance more than boosting ensemble approaches and hybrid models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
4.50%
发文量
110
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信