检测无认知障碍的2型糖尿病患者脑结构连通性的破坏。

IF 4.6 3区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Yi-Fan Li, Yue Wei, Ming-Rui Li, Zhi-Zhong Sun, Wei-Yan Xie, Qian-Fan Li, Chen-Hui Xie, Jing-Yi Xiang, Xin Tan, Shi-Jun Qiu, Yi Liang
{"title":"检测无认知障碍的2型糖尿病患者脑结构连通性的破坏。","authors":"Yi-Fan Li, Yue Wei, Ming-Rui Li, Zhi-Zhong Sun, Wei-Yan Xie, Qian-Fan Li, Chen-Hui Xie, Jing-Yi Xiang, Xin Tan, Shi-Jun Qiu, Yi Liang","doi":"10.4239/wjd.v16.i7.103468","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cognitive decline in type 2 diabetes mellitus (T2DM) occurs years before the onset of clinical symptoms. Early detection of this incipient cognitive decline stage, which is T2DM without mild cognitive impairment, is critical for clinical intervention, yet it remains elusive and challenging to identify.</p><p><strong>Aim: </strong>To identify structural changes in the brains of T2DM patients without cognitive impairment to gain insights into the early-stage cognitive decline.</p><p><strong>Methods: </strong>Using diffusion tensor imaging (DTI), we constructed structural brain networks in 47 T2DM patients and 47 age-/sex-matched healthy controls. Machine learning models incorporating connectivity features were developed to classify T2DM brains and predict disease duration.</p><p><strong>Results: </strong>T2DM patients exhibited reduced global/local efficiency and small-worldness, alongside weakened connectivity in cortical regions but enhanced subcortical-frontal connections, suggesting compensatory mechanisms. A classification model leveraging 18 connectivity features achieved 92.5% accuracy in distinguishing T2DM brains. Structural connectivity patterns further predicted disease onset with an error of ± 1.9 years.</p><p><strong>Conclusion: </strong>Our findings reveal early-stage brain network reorganization in T2DM, highlighting subcortical-frontal connectivity as a compensatory biomarker. The high-accuracy models demonstrate the potential of DTI-based biomarkers for preclinical cognitive decline detection.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 7","pages":"103468"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278079/pdf/","citationCount":"0","resultStr":"{\"title\":\"Detect the disrupted brain structural connectivity in type 2 diabetes mellitus patients without cognitive impairment.\",\"authors\":\"Yi-Fan Li, Yue Wei, Ming-Rui Li, Zhi-Zhong Sun, Wei-Yan Xie, Qian-Fan Li, Chen-Hui Xie, Jing-Yi Xiang, Xin Tan, Shi-Jun Qiu, Yi Liang\",\"doi\":\"10.4239/wjd.v16.i7.103468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cognitive decline in type 2 diabetes mellitus (T2DM) occurs years before the onset of clinical symptoms. Early detection of this incipient cognitive decline stage, which is T2DM without mild cognitive impairment, is critical for clinical intervention, yet it remains elusive and challenging to identify.</p><p><strong>Aim: </strong>To identify structural changes in the brains of T2DM patients without cognitive impairment to gain insights into the early-stage cognitive decline.</p><p><strong>Methods: </strong>Using diffusion tensor imaging (DTI), we constructed structural brain networks in 47 T2DM patients and 47 age-/sex-matched healthy controls. Machine learning models incorporating connectivity features were developed to classify T2DM brains and predict disease duration.</p><p><strong>Results: </strong>T2DM patients exhibited reduced global/local efficiency and small-worldness, alongside weakened connectivity in cortical regions but enhanced subcortical-frontal connections, suggesting compensatory mechanisms. A classification model leveraging 18 connectivity features achieved 92.5% accuracy in distinguishing T2DM brains. Structural connectivity patterns further predicted disease onset with an error of ± 1.9 years.</p><p><strong>Conclusion: </strong>Our findings reveal early-stage brain network reorganization in T2DM, highlighting subcortical-frontal connectivity as a compensatory biomarker. The high-accuracy models demonstrate the potential of DTI-based biomarkers for preclinical cognitive decline detection.</p>\",\"PeriodicalId\":48607,\"journal\":{\"name\":\"World Journal of Diabetes\",\"volume\":\"16 7\",\"pages\":\"103468\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278079/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4239/wjd.v16.i7.103468\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i7.103468","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

背景:2型糖尿病(T2DM)的认知能力下降发生在临床症状出现前几年。早期发现这种早期认知能力下降阶段,即无轻度认知障碍的T2DM,对临床干预至关重要,但它仍然难以捉摸且具有挑战性。目的:研究无认知功能障碍的2型糖尿病患者的大脑结构变化,以了解早期认知功能下降。方法:应用弥散张量成像(DTI)技术,对47例T2DM患者和47例年龄/性别匹配的健康对照进行脑结构网络构建。开发了结合连接特征的机器学习模型,用于对T2DM大脑进行分类并预测疾病持续时间。结果:T2DM患者表现出整体/局部效率降低和小世界,皮质区域连通性减弱,但皮质下-额叶连接增强,提示代偿机制。利用18个连接特征的分类模型在区分T2DM大脑方面达到了92.5%的准确率。结构连接模式进一步预测疾病发病,误差为±1.9年。结论:我们的研究结果揭示了T2DM早期大脑网络重组,突出了皮质下-额叶连通性作为代偿性生物标志物。高精度的模型显示了基于dti的生物标志物在临床前认知衰退检测中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detect the disrupted brain structural connectivity in type 2 diabetes mellitus patients without cognitive impairment.

Background: Cognitive decline in type 2 diabetes mellitus (T2DM) occurs years before the onset of clinical symptoms. Early detection of this incipient cognitive decline stage, which is T2DM without mild cognitive impairment, is critical for clinical intervention, yet it remains elusive and challenging to identify.

Aim: To identify structural changes in the brains of T2DM patients without cognitive impairment to gain insights into the early-stage cognitive decline.

Methods: Using diffusion tensor imaging (DTI), we constructed structural brain networks in 47 T2DM patients and 47 age-/sex-matched healthy controls. Machine learning models incorporating connectivity features were developed to classify T2DM brains and predict disease duration.

Results: T2DM patients exhibited reduced global/local efficiency and small-worldness, alongside weakened connectivity in cortical regions but enhanced subcortical-frontal connections, suggesting compensatory mechanisms. A classification model leveraging 18 connectivity features achieved 92.5% accuracy in distinguishing T2DM brains. Structural connectivity patterns further predicted disease onset with an error of ± 1.9 years.

Conclusion: Our findings reveal early-stage brain network reorganization in T2DM, highlighting subcortical-frontal connectivity as a compensatory biomarker. The high-accuracy models demonstrate the potential of DTI-based biomarkers for preclinical cognitive decline detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Diabetes
World Journal of Diabetes ENDOCRINOLOGY & METABOLISM-
自引率
2.40%
发文量
909
期刊介绍: The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信