通过多组学阐明糖尿病:揭示疾病机制和推进个性化治疗。

IF 4.2 3区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Chen-Meng Song, Ta-Hui Lin, Hou-Tan Huang, Jeng-Yuan Yao
{"title":"通过多组学阐明糖尿病:揭示疾病机制和推进个性化治疗。","authors":"Chen-Meng Song, Ta-Hui Lin, Hou-Tan Huang, Jeng-Yuan Yao","doi":"10.4239/wjd.v16.i7.106218","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) comprises distinct subtypes-including type 1 DM, type 2 DM, and gestational DM - all characterized by chronic hyperglycemia and substantial morbidity. Conventional diagnostic and therapeutic strategies often fall short in addressing the complex, multifactorial nature of DM. This review explores how multi-omics integration enhances our mechanistic understanding of DM and informs emerging personalized therapeutic approaches. We consolidated genomic, transcriptomic, proteomic, metabolomic, and microbiomic data from major databases and peer-reviewed publications (2015-2025), with an emphasis on clinical relevance. Multi-omics investigations have identified convergent molecular networks underlying β-cell dysfunction, insulin resistance, and diabetic complications. The combination of metabolomics and microbiomics highlights critical interactions between metabolic intermediates and gut dysbiosis. Novel biomarkers facilitate early detection of DM and its complications, while single-cell multi-omics and machine learning further refine risk stratification. By dissecting DM heterogeneity more precisely, multi-omics integration enables targeted interventions and preventive strategies. Future efforts should focus on data harmonization, ethical considerations, and real-world validation to fully leverage multi-omics in addressing the global DM burden.</p>","PeriodicalId":48607,"journal":{"name":"World Journal of Diabetes","volume":"16 7","pages":"106218"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278082/pdf/","citationCount":"0","resultStr":"{\"title\":\"Illuminating diabetes <i>via</i> multi-omics: Unraveling disease mechanisms and advancing personalized therapy.\",\"authors\":\"Chen-Meng Song, Ta-Hui Lin, Hou-Tan Huang, Jeng-Yuan Yao\",\"doi\":\"10.4239/wjd.v16.i7.106218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) comprises distinct subtypes-including type 1 DM, type 2 DM, and gestational DM - all characterized by chronic hyperglycemia and substantial morbidity. Conventional diagnostic and therapeutic strategies often fall short in addressing the complex, multifactorial nature of DM. This review explores how multi-omics integration enhances our mechanistic understanding of DM and informs emerging personalized therapeutic approaches. We consolidated genomic, transcriptomic, proteomic, metabolomic, and microbiomic data from major databases and peer-reviewed publications (2015-2025), with an emphasis on clinical relevance. Multi-omics investigations have identified convergent molecular networks underlying β-cell dysfunction, insulin resistance, and diabetic complications. The combination of metabolomics and microbiomics highlights critical interactions between metabolic intermediates and gut dysbiosis. Novel biomarkers facilitate early detection of DM and its complications, while single-cell multi-omics and machine learning further refine risk stratification. By dissecting DM heterogeneity more precisely, multi-omics integration enables targeted interventions and preventive strategies. Future efforts should focus on data harmonization, ethical considerations, and real-world validation to fully leverage multi-omics in addressing the global DM burden.</p>\",\"PeriodicalId\":48607,\"journal\":{\"name\":\"World Journal of Diabetes\",\"volume\":\"16 7\",\"pages\":\"106218\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278082/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4239/wjd.v16.i7.106218\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4239/wjd.v16.i7.106218","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病(DM)包括不同的亚型,包括1型糖尿病、2型糖尿病和妊娠期糖尿病,均以慢性高血糖和大量发病率为特征。传统的诊断和治疗策略往往不足以解决糖尿病的复杂性和多因素性质。本综述探讨了多组学整合如何增强我们对糖尿病的机制理解,并为新兴的个性化治疗方法提供信息。我们整合了来自主要数据库和同行评审出版物(2015-2025)的基因组学、转录组学、蛋白质组学、代谢组学和微生物组学数据,重点关注临床相关性。多组学研究已经确定了β细胞功能障碍、胰岛素抵抗和糖尿病并发症的趋同分子网络。代谢组学和微生物组学的结合突出了代谢中间体和肠道生态失调之间的关键相互作用。新的生物标志物有助于早期发现糖尿病及其并发症,而单细胞多组学和机器学习进一步完善了风险分层。通过更精确地剖析糖尿病异质性,多组学整合可以实现有针对性的干预和预防策略。未来的工作应侧重于数据协调、伦理考虑和现实世界验证,以充分利用多组学来解决全球DM负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Illuminating diabetes via multi-omics: Unraveling disease mechanisms and advancing personalized therapy.

Diabetes mellitus (DM) comprises distinct subtypes-including type 1 DM, type 2 DM, and gestational DM - all characterized by chronic hyperglycemia and substantial morbidity. Conventional diagnostic and therapeutic strategies often fall short in addressing the complex, multifactorial nature of DM. This review explores how multi-omics integration enhances our mechanistic understanding of DM and informs emerging personalized therapeutic approaches. We consolidated genomic, transcriptomic, proteomic, metabolomic, and microbiomic data from major databases and peer-reviewed publications (2015-2025), with an emphasis on clinical relevance. Multi-omics investigations have identified convergent molecular networks underlying β-cell dysfunction, insulin resistance, and diabetic complications. The combination of metabolomics and microbiomics highlights critical interactions between metabolic intermediates and gut dysbiosis. Novel biomarkers facilitate early detection of DM and its complications, while single-cell multi-omics and machine learning further refine risk stratification. By dissecting DM heterogeneity more precisely, multi-omics integration enables targeted interventions and preventive strategies. Future efforts should focus on data harmonization, ethical considerations, and real-world validation to fully leverage multi-omics in addressing the global DM burden.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World Journal of Diabetes
World Journal of Diabetes ENDOCRINOLOGY & METABOLISM-
自引率
2.40%
发文量
909
期刊介绍: The WJD is a high-quality, peer reviewed, open-access journal. The primary task of WJD is to rapidly publish high-quality original articles, reviews, editorials, and case reports in the field of diabetes. In order to promote productive academic communication, the peer review process for the WJD is transparent; to this end, all published manuscripts are accompanied by the anonymized reviewers’ comments as well as the authors’ responses. The primary aims of the WJD are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in diabetes. Scope: Diabetes Complications, Experimental Diabetes Mellitus, Type 1 Diabetes Mellitus, Type 2 Diabetes Mellitus, Diabetes, Gestational, Diabetic Angiopathies, Diabetic Cardiomyopathies, Diabetic Coma, Diabetic Ketoacidosis, Diabetic Nephropathies, Diabetic Neuropathies, Donohue Syndrome, Fetal Macrosomia, and Prediabetic State.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信