Midnolin的分子功能及其与帕金森病的相关性。

IF 2.7 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular and Cellular Biology Pub Date : 2025-01-01 Epub Date: 2025-07-22 DOI:10.1080/10985549.2025.2535666
Yutaro Obara, Ayano Chiba
{"title":"Midnolin的分子功能及其与帕金森病的相关性。","authors":"Yutaro Obara, Ayano Chiba","doi":"10.1080/10985549.2025.2535666","DOIUrl":null,"url":null,"abstract":"<p><p>Midnolin (<i>Midn</i>) was originally discovered as a gene expressed specifically in the mouse midbrain at the embryonic developmental stage; MIDN was localized in the nucleus/nucleolus. Although the pathophysiological roles of MIDN remained largely unknown for many years after its discovery, its molecular functions and relevance to diseases have gradually become clearer. In PC12 cells, a rat neuronal model cell line, liquidity factors that are necessary for neurite outgrowth are reported to induce <i>Midn</i> gene expression. In addition, MIDN is required for E3 ubiquitin-protein ligase parkin expression, suggesting that MIDN is important for the development and maintenance of neuronal functions. Notably, it was recently reported that MIDN plays fundamental roles in the ubiquitin-independent proteasomal degradation of various nuclear proteins and transcription factors. Regarding the relationship between MIDN and diseases, copy number loss of <i>MIDN</i> is associated with Parkinson's disease, suggesting that <i>MIDN</i> is a genetic risk factor for this disease. In addition, MIDN is relevant to many types of malignant cancer, including B-cell lymphoma and liver cancer. Thus, MIDN is an essential molecule for the maintenance of homeostasis, and its functional disorder triggers multiple diseases depending on the affected tissues/organs. <i>MIDN</i> therefore shows promise as a potential therapeutic target and prognostic biomarker.</p>","PeriodicalId":18658,"journal":{"name":"Molecular and Cellular Biology","volume":" ","pages":"471-480"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Function of Midnolin and Its Relevance to Parkinson's Disease.\",\"authors\":\"Yutaro Obara, Ayano Chiba\",\"doi\":\"10.1080/10985549.2025.2535666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Midnolin (<i>Midn</i>) was originally discovered as a gene expressed specifically in the mouse midbrain at the embryonic developmental stage; MIDN was localized in the nucleus/nucleolus. Although the pathophysiological roles of MIDN remained largely unknown for many years after its discovery, its molecular functions and relevance to diseases have gradually become clearer. In PC12 cells, a rat neuronal model cell line, liquidity factors that are necessary for neurite outgrowth are reported to induce <i>Midn</i> gene expression. In addition, MIDN is required for E3 ubiquitin-protein ligase parkin expression, suggesting that MIDN is important for the development and maintenance of neuronal functions. Notably, it was recently reported that MIDN plays fundamental roles in the ubiquitin-independent proteasomal degradation of various nuclear proteins and transcription factors. Regarding the relationship between MIDN and diseases, copy number loss of <i>MIDN</i> is associated with Parkinson's disease, suggesting that <i>MIDN</i> is a genetic risk factor for this disease. In addition, MIDN is relevant to many types of malignant cancer, including B-cell lymphoma and liver cancer. Thus, MIDN is an essential molecule for the maintenance of homeostasis, and its functional disorder triggers multiple diseases depending on the affected tissues/organs. <i>MIDN</i> therefore shows promise as a potential therapeutic target and prognostic biomarker.</p>\",\"PeriodicalId\":18658,\"journal\":{\"name\":\"Molecular and Cellular Biology\",\"volume\":\" \",\"pages\":\"471-480\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10985549.2025.2535666\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2025.2535666","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Midnolin (Midn)最初被发现是在小鼠胚胎发育阶段中脑中特异性表达的基因;MIDN定位于细胞核/核仁。尽管MIDN的病理生理作用在发现后的许多年里仍不为人所知,但其分子功能及其与疾病的相关性已逐渐清晰。在大鼠神经元模型细胞系PC12细胞中,据报道,神经突起生长所必需的流动性因子可诱导Midn基因表达。此外,E3泛素蛋白连接酶parkin的表达需要MIDN,这表明MIDN对神经元功能的发育和维持很重要。值得注意的是,最近有报道称MIDN在各种核蛋白和转录因子的泛素非依赖性蛋白酶体降解中起着重要作用。关于MIDN与疾病的关系,MIDN拷贝数缺失与帕金森病相关,提示MIDN是帕金森病的遗传危险因素。此外,MIDN与多种恶性肿瘤有关,包括b细胞淋巴瘤和肝癌。因此,MIDN是维持体内平衡所必需的分子,其功能紊乱会根据受影响的组织/器官引发多种疾病。因此,MIDN有望成为潜在的治疗靶点和预后生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Function of Midnolin and Its Relevance to Parkinson's Disease.

Midnolin (Midn) was originally discovered as a gene expressed specifically in the mouse midbrain at the embryonic developmental stage; MIDN was localized in the nucleus/nucleolus. Although the pathophysiological roles of MIDN remained largely unknown for many years after its discovery, its molecular functions and relevance to diseases have gradually become clearer. In PC12 cells, a rat neuronal model cell line, liquidity factors that are necessary for neurite outgrowth are reported to induce Midn gene expression. In addition, MIDN is required for E3 ubiquitin-protein ligase parkin expression, suggesting that MIDN is important for the development and maintenance of neuronal functions. Notably, it was recently reported that MIDN plays fundamental roles in the ubiquitin-independent proteasomal degradation of various nuclear proteins and transcription factors. Regarding the relationship between MIDN and diseases, copy number loss of MIDN is associated with Parkinson's disease, suggesting that MIDN is a genetic risk factor for this disease. In addition, MIDN is relevant to many types of malignant cancer, including B-cell lymphoma and liver cancer. Thus, MIDN is an essential molecule for the maintenance of homeostasis, and its functional disorder triggers multiple diseases depending on the affected tissues/organs. MIDN therefore shows promise as a potential therapeutic target and prognostic biomarker.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Biology
Molecular and Cellular Biology 生物-生化与分子生物学
CiteScore
9.80
自引率
1.90%
发文量
120
审稿时长
1 months
期刊介绍: Molecular and Cellular Biology (MCB) showcases significant discoveries in cellular morphology and function, genome organization, regulation of genetic expression, morphogenesis, and somatic cell genetics. The journal also examines viral systems, publishing papers that emphasize their impact on the cell.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信