肢体间充质组蛋白脱乙酰酶4对软骨细胞增殖、生长板维持和正常骨形成至关重要。

IF 2.1 4区 医学 Q3 CELL BIOLOGY
Yunfei Wang, Ling Wu, Sujing Zong, Pengcui Li, Lixun Chai, Li Guo, Xinping Chen, Shiping Yu, Jian Sun
{"title":"肢体间充质组蛋白脱乙酰酶4对软骨细胞增殖、生长板维持和正常骨形成至关重要。","authors":"Yunfei Wang, Ling Wu, Sujing Zong, Pengcui Li, Lixun Chai, Li Guo, Xinping Chen, Shiping Yu, Jian Sun","doi":"10.1080/03008207.2025.2530045","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dysregulation of well-ordered chondrocyte proliferation and differentiation leads to distorted architecture of the growth plate, resulting in skeletal dysplasia with impaired longitudinal bone growth. Histone deacetylase 4 (HDAC4) is essential for chondrocyte hypertrophy and endochondral bone formation, but its role in postnatal bone development remains unexplored due to early lethality in Hdac4-ablated mice. Furthermore, a direct in vivo effect of Hdac4 on mesenchymal cell specification and bone development has not been investigated.</p><p><strong>Methods: </strong>We generated <i>Prx1-Cre;Hdac4<sup>fl/fl</sup>, Sp7-Cre;Hdac4<sup>fl/fl</sup>, Acan-CreERT2;Hdac4<sup>fl/fl</sup></i>, and <i>Hdac4<sup>fl/fl</sup></i> transgenic mice, respectively. The genotyping of transgenic mice was performed via conventional PCR. Whole-body radiographs and x-ray analyses of limbs were conducted. Trabecular and cortical bone microstructures of tibias from 21-day-old mice were evaluated using micro-computed tomography. EdU label-retention assay investigated cell proliferation, while histological analyses included H&E, TRAP, and Von Kossa staining. RT-qPCR and Immunohistochemistry to detect the pro-osteogenic function of HDAC4.</p><p><strong>Results: </strong>Hdac4 inactivation in limb mesenchyme cells resulted in limb shortening, premature growth plate closure, abnormal bone morphologies, and loss of the rounded articular surface. HDAC4 was crucial for regulating chondrocyte proliferation and secondary ossification center formation. Micro-computed tomography showed increased trabecular and cortical bone <i>Prx1-Cre;Hdac4<sup>fl/fl</sup></i> mice at 3 weeks, with altered microarchitecture. .</p><p><strong>Conclusion: </strong>Hdac4 in limb mesenchymal cells plays an indispensable role in chondrocyte proliferation, maintenance of the growth plate and formation of secondary ossification centers, its pro-osteogenic role was accomplished through premature differentiation of chondrocytes, along with accelerated cartilage-to-bone conversion.</p>","PeriodicalId":10661,"journal":{"name":"Connective Tissue Research","volume":" ","pages":"1-18"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Histone deacetylase 4 in limb mesenchyme is essential for chondrocyte proliferation, growth plate maintenance and proper bone formation.\",\"authors\":\"Yunfei Wang, Ling Wu, Sujing Zong, Pengcui Li, Lixun Chai, Li Guo, Xinping Chen, Shiping Yu, Jian Sun\",\"doi\":\"10.1080/03008207.2025.2530045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dysregulation of well-ordered chondrocyte proliferation and differentiation leads to distorted architecture of the growth plate, resulting in skeletal dysplasia with impaired longitudinal bone growth. Histone deacetylase 4 (HDAC4) is essential for chondrocyte hypertrophy and endochondral bone formation, but its role in postnatal bone development remains unexplored due to early lethality in Hdac4-ablated mice. Furthermore, a direct in vivo effect of Hdac4 on mesenchymal cell specification and bone development has not been investigated.</p><p><strong>Methods: </strong>We generated <i>Prx1-Cre;Hdac4<sup>fl/fl</sup>, Sp7-Cre;Hdac4<sup>fl/fl</sup>, Acan-CreERT2;Hdac4<sup>fl/fl</sup></i>, and <i>Hdac4<sup>fl/fl</sup></i> transgenic mice, respectively. The genotyping of transgenic mice was performed via conventional PCR. Whole-body radiographs and x-ray analyses of limbs were conducted. Trabecular and cortical bone microstructures of tibias from 21-day-old mice were evaluated using micro-computed tomography. EdU label-retention assay investigated cell proliferation, while histological analyses included H&E, TRAP, and Von Kossa staining. RT-qPCR and Immunohistochemistry to detect the pro-osteogenic function of HDAC4.</p><p><strong>Results: </strong>Hdac4 inactivation in limb mesenchyme cells resulted in limb shortening, premature growth plate closure, abnormal bone morphologies, and loss of the rounded articular surface. HDAC4 was crucial for regulating chondrocyte proliferation and secondary ossification center formation. Micro-computed tomography showed increased trabecular and cortical bone <i>Prx1-Cre;Hdac4<sup>fl/fl</sup></i> mice at 3 weeks, with altered microarchitecture. .</p><p><strong>Conclusion: </strong>Hdac4 in limb mesenchymal cells plays an indispensable role in chondrocyte proliferation, maintenance of the growth plate and formation of secondary ossification centers, its pro-osteogenic role was accomplished through premature differentiation of chondrocytes, along with accelerated cartilage-to-bone conversion.</p>\",\"PeriodicalId\":10661,\"journal\":{\"name\":\"Connective Tissue Research\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connective Tissue Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/03008207.2025.2530045\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connective Tissue Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03008207.2025.2530045","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:有序的软骨细胞增殖和分化失调导致生长板结构扭曲,导致骨骼发育不良,纵向骨生长受损。组蛋白去乙酰化酶4 (HDAC4)对软骨细胞肥大和软骨内骨形成至关重要,但由于HDAC4消融小鼠的早期致残性,其在出生后骨发育中的作用尚不清楚。此外,Hdac4在体内对间充质细胞分化和骨发育的直接影响尚未被研究。方法:分别生成Prx1-Cre、Hdac4fl/fl、Sp7-Cre、Hdac4fl/fl、Acan-CreERT2、Hdac4fl/fl、Hdac4fl/fl转基因小鼠。采用常规PCR方法对转基因小鼠进行基因分型。进行全身x线片及四肢x线片分析。采用显微计算机断层扫描技术对21日龄小鼠胫骨骨小梁和皮质骨微结构进行了评价。EdU标记保留法研究细胞增殖,而组织学分析包括H&E, TRAP和Von Kossa染色。RT-qPCR和免疫组化检测HDAC4的促成骨功能。结果:肢体间充质细胞Hdac4失活导致肢体缩短、生长板过早闭合、骨形态异常、圆形关节面缺失。HDAC4对调节软骨细胞增殖和继发性骨化中心的形成至关重要。显微计算机断层扫描显示,3周时小鼠小梁和皮质骨Prx1-Cre;Hdac4fl/fl增加,微结构改变。结论:肢体间充质细胞中Hdac4在软骨细胞增殖、维持生长板、形成次生骨化中心等过程中发挥着不可缺少的作用,其促成骨作用是通过软骨细胞过早分化,加速软骨向骨转化来完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Histone deacetylase 4 in limb mesenchyme is essential for chondrocyte proliferation, growth plate maintenance and proper bone formation.

Background: Dysregulation of well-ordered chondrocyte proliferation and differentiation leads to distorted architecture of the growth plate, resulting in skeletal dysplasia with impaired longitudinal bone growth. Histone deacetylase 4 (HDAC4) is essential for chondrocyte hypertrophy and endochondral bone formation, but its role in postnatal bone development remains unexplored due to early lethality in Hdac4-ablated mice. Furthermore, a direct in vivo effect of Hdac4 on mesenchymal cell specification and bone development has not been investigated.

Methods: We generated Prx1-Cre;Hdac4fl/fl, Sp7-Cre;Hdac4fl/fl, Acan-CreERT2;Hdac4fl/fl, and Hdac4fl/fl transgenic mice, respectively. The genotyping of transgenic mice was performed via conventional PCR. Whole-body radiographs and x-ray analyses of limbs were conducted. Trabecular and cortical bone microstructures of tibias from 21-day-old mice were evaluated using micro-computed tomography. EdU label-retention assay investigated cell proliferation, while histological analyses included H&E, TRAP, and Von Kossa staining. RT-qPCR and Immunohistochemistry to detect the pro-osteogenic function of HDAC4.

Results: Hdac4 inactivation in limb mesenchyme cells resulted in limb shortening, premature growth plate closure, abnormal bone morphologies, and loss of the rounded articular surface. HDAC4 was crucial for regulating chondrocyte proliferation and secondary ossification center formation. Micro-computed tomography showed increased trabecular and cortical bone Prx1-Cre;Hdac4fl/fl mice at 3 weeks, with altered microarchitecture. .

Conclusion: Hdac4 in limb mesenchymal cells plays an indispensable role in chondrocyte proliferation, maintenance of the growth plate and formation of secondary ossification centers, its pro-osteogenic role was accomplished through premature differentiation of chondrocytes, along with accelerated cartilage-to-bone conversion.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Connective Tissue Research
Connective Tissue Research 生物-细胞生物学
CiteScore
6.60
自引率
3.40%
发文量
37
审稿时长
2 months
期刊介绍: The aim of Connective Tissue Research is to present original and significant research in all basic areas of connective tissue and matrix biology. The journal also provides topical reviews and, on occasion, the proceedings of conferences in areas of special interest at which original work is presented. The journal supports an interdisciplinary approach; we present a variety of perspectives from different disciplines, including Biochemistry Cell and Molecular Biology Immunology Structural Biology Biophysics Biomechanics Regenerative Medicine The interests of the Editorial Board are to understand, mechanistically, the structure-function relationships in connective tissue extracellular matrix, and its associated cells, through interpretation of sophisticated experimentation using state-of-the-art technologies that include molecular genetics, imaging, immunology, biomechanics and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信