深度学习用于支气管内超声多模态视频检测和诊断胸内淋巴结病:一项多中心研究。

IF 10.6 1区 医学 Q1 CELL BIOLOGY
Cell Reports Medicine Pub Date : 2025-08-19 Epub Date: 2025-07-21 DOI:10.1016/j.xcrm.2025.102243
Junxiang Chen, Jin Li, Chunxi Zhang, Xinxin Zhi, Lei Wang, Quncheng Zhang, Pengfei Yu, Fei Tang, Xiankui Zha, Limin Wang, Wenrui Dai, Hongkai Xiong, Jiayuan Sun
{"title":"深度学习用于支气管内超声多模态视频检测和诊断胸内淋巴结病:一项多中心研究。","authors":"Junxiang Chen, Jin Li, Chunxi Zhang, Xinxin Zhi, Lei Wang, Quncheng Zhang, Pengfei Yu, Fei Tang, Xiankui Zha, Limin Wang, Wenrui Dai, Hongkai Xiong, Jiayuan Sun","doi":"10.1016/j.xcrm.2025.102243","DOIUrl":null,"url":null,"abstract":"<p><p>Convex probe endobronchial ultrasound (CP-EBUS) ultrasonographic features are important for diagnosing intrathoracic lymphadenopathy. Conventional methods for CP-EBUS imaging analysis rely heavily on physician expertise. To overcome this obstacle, we propose a deep learning-aided diagnostic system (AI-CEMA) to automatically select representative images, identify lymph nodes (LNs), and differentiate benign from malignant LNs based on CP-EBUS multimodal videos. AI-CEMA is first trained using 1,006 LNs from a single center and validated with a retrospective study and then demonstrated with a prospective multi-center study on 267 LNs. AI-CEMA achieves an area under the curve (AUC) of 0.8490 (95% confidence interval [CI], 0.8000-0.8980), which is comparable to experienced experts (AUC, 0.7847 [95% CI, 0.7320-0.8373]; p = 0.080). Additionally, AI-CEMA is successfully transferred to a pulmonary lesion diagnosis task and obtains a commendable AUC of 0.8192 (95% CI, 0.7676-0.8709). In conclusion, AI-CEMA shows great potential in clinical diagnosis of intrathoracic lymphadenopathy and pulmonary lesions by providing automated, noninvasive, and expert-level diagnosis.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102243"},"PeriodicalIF":10.6000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12432367/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for detection and diagnosis of intrathoracic lymphadenopathy from endobronchial ultrasound multimodal videos: A multi-center study.\",\"authors\":\"Junxiang Chen, Jin Li, Chunxi Zhang, Xinxin Zhi, Lei Wang, Quncheng Zhang, Pengfei Yu, Fei Tang, Xiankui Zha, Limin Wang, Wenrui Dai, Hongkai Xiong, Jiayuan Sun\",\"doi\":\"10.1016/j.xcrm.2025.102243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Convex probe endobronchial ultrasound (CP-EBUS) ultrasonographic features are important for diagnosing intrathoracic lymphadenopathy. Conventional methods for CP-EBUS imaging analysis rely heavily on physician expertise. To overcome this obstacle, we propose a deep learning-aided diagnostic system (AI-CEMA) to automatically select representative images, identify lymph nodes (LNs), and differentiate benign from malignant LNs based on CP-EBUS multimodal videos. AI-CEMA is first trained using 1,006 LNs from a single center and validated with a retrospective study and then demonstrated with a prospective multi-center study on 267 LNs. AI-CEMA achieves an area under the curve (AUC) of 0.8490 (95% confidence interval [CI], 0.8000-0.8980), which is comparable to experienced experts (AUC, 0.7847 [95% CI, 0.7320-0.8373]; p = 0.080). Additionally, AI-CEMA is successfully transferred to a pulmonary lesion diagnosis task and obtains a commendable AUC of 0.8192 (95% CI, 0.7676-0.8709). In conclusion, AI-CEMA shows great potential in clinical diagnosis of intrathoracic lymphadenopathy and pulmonary lesions by providing automated, noninvasive, and expert-level diagnosis.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":\" \",\"pages\":\"102243\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12432367/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2025.102243\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102243","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

凸探头支气管超声(CP-EBUS)超声特征对诊断胸内淋巴结病变具有重要意义。传统的CP-EBUS成像分析方法在很大程度上依赖于医生的专业知识。为了克服这一障碍,我们提出了一种基于CP-EBUS多模态视频的深度学习辅助诊断系统(AI-CEMA)来自动选择代表性图像,识别淋巴结(LNs),并区分良性和恶性LNs。AI-CEMA首先使用来自单中心的1006个LNs进行训练,并通过回顾性研究进行验证,然后通过267个LNs的前瞻性多中心研究进行验证。AI-CEMA的曲线下面积(AUC)为0.8490(95%可信区间[CI], 0.8000-0.8980),与经验丰富的专家(AUC, 0.7847 [95% CI, 0.7320-0.8373])相当;P = 0.080)。此外,AI-CEMA成功地转移到肺病变诊断任务中,并获得了令人称赞的0.8192 AUC (95% CI, 0.7676-0.8709)。总之,AI-CEMA通过提供自动化、无创和专家级的诊断,在胸内淋巴结病和肺部病变的临床诊断中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for detection and diagnosis of intrathoracic lymphadenopathy from endobronchial ultrasound multimodal videos: A multi-center study.

Convex probe endobronchial ultrasound (CP-EBUS) ultrasonographic features are important for diagnosing intrathoracic lymphadenopathy. Conventional methods for CP-EBUS imaging analysis rely heavily on physician expertise. To overcome this obstacle, we propose a deep learning-aided diagnostic system (AI-CEMA) to automatically select representative images, identify lymph nodes (LNs), and differentiate benign from malignant LNs based on CP-EBUS multimodal videos. AI-CEMA is first trained using 1,006 LNs from a single center and validated with a retrospective study and then demonstrated with a prospective multi-center study on 267 LNs. AI-CEMA achieves an area under the curve (AUC) of 0.8490 (95% confidence interval [CI], 0.8000-0.8980), which is comparable to experienced experts (AUC, 0.7847 [95% CI, 0.7320-0.8373]; p = 0.080). Additionally, AI-CEMA is successfully transferred to a pulmonary lesion diagnosis task and obtains a commendable AUC of 0.8192 (95% CI, 0.7676-0.8709). In conclusion, AI-CEMA shows great potential in clinical diagnosis of intrathoracic lymphadenopathy and pulmonary lesions by providing automated, noninvasive, and expert-level diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信