{"title":"iop - cancer:鉴定影响癌症表型的突变顺序对。","authors":"Yijing Zhang, Shaobo Kang, Renjie Dou, Wanmei Zhang, Yuanyuan Liu, Yang Wu, Dongxue Li, Fangfang Fan, Yanyan Ping","doi":"10.1093/bib/bbaf362","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer development and progression are driven by the accumulation of somatic genetic alterations, which occur in a specific temporal order. However, how the order of mutations impacts cancer phenotypes of solid tumors remains poorly understood. To address this, we developed a novel computational framework, IMOP-Cancer (Identifying Mutation Order Pairs in Cancer), to identify mutation gene pairs whose order influences cancer phenotypes. We applied IMOP-Cancer to The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) cohort and identified 446 key mutation order pairs, with 34 pairs significantly associated with prognosis. Mutation order impacts cancer phenotypes, as demonstrated by CSMD3 and PTPRD (tumor proliferation) and TP53 and NAV3 (immune modulation), with effects validated in four independent datasets. We further presented the impact of mutation pairs on cancer phenotypes through case studies in the TCGA cohorts of bladder urothelial carcinoma (BLCA), and colon adenocarcinoma (COAD). We extended this analysis to 33 cancer cohorts from TCGA portal, identifying 106 034 critical mutation pairs across 17 cancers, with 3036 pairs co-occurring in multiple cancers. Shared mutation pairs across cancers also showed distinct effects on cancer phenotype. Our study highlights the importance of mutation order in cancer progression and diversity, offering new insights into the temporal dynamics of co-occurring mutations and paving the way for personalized treatment strategies and improved diagnosis.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284763/pdf/","citationCount":"0","resultStr":"{\"title\":\"IMOP-Cancer: identifying mutation order pairs impacting cancer phenotypes.\",\"authors\":\"Yijing Zhang, Shaobo Kang, Renjie Dou, Wanmei Zhang, Yuanyuan Liu, Yang Wu, Dongxue Li, Fangfang Fan, Yanyan Ping\",\"doi\":\"10.1093/bib/bbaf362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer development and progression are driven by the accumulation of somatic genetic alterations, which occur in a specific temporal order. However, how the order of mutations impacts cancer phenotypes of solid tumors remains poorly understood. To address this, we developed a novel computational framework, IMOP-Cancer (Identifying Mutation Order Pairs in Cancer), to identify mutation gene pairs whose order influences cancer phenotypes. We applied IMOP-Cancer to The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) cohort and identified 446 key mutation order pairs, with 34 pairs significantly associated with prognosis. Mutation order impacts cancer phenotypes, as demonstrated by CSMD3 and PTPRD (tumor proliferation) and TP53 and NAV3 (immune modulation), with effects validated in four independent datasets. We further presented the impact of mutation pairs on cancer phenotypes through case studies in the TCGA cohorts of bladder urothelial carcinoma (BLCA), and colon adenocarcinoma (COAD). We extended this analysis to 33 cancer cohorts from TCGA portal, identifying 106 034 critical mutation pairs across 17 cancers, with 3036 pairs co-occurring in multiple cancers. Shared mutation pairs across cancers also showed distinct effects on cancer phenotype. Our study highlights the importance of mutation order in cancer progression and diversity, offering new insights into the temporal dynamics of co-occurring mutations and paving the way for personalized treatment strategies and improved diagnosis.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12284763/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf362\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf362","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
IMOP-Cancer: identifying mutation order pairs impacting cancer phenotypes.
Cancer development and progression are driven by the accumulation of somatic genetic alterations, which occur in a specific temporal order. However, how the order of mutations impacts cancer phenotypes of solid tumors remains poorly understood. To address this, we developed a novel computational framework, IMOP-Cancer (Identifying Mutation Order Pairs in Cancer), to identify mutation gene pairs whose order influences cancer phenotypes. We applied IMOP-Cancer to The Cancer Genome Atlas-Lung Adenocarcinoma (TCGA-LUAD) cohort and identified 446 key mutation order pairs, with 34 pairs significantly associated with prognosis. Mutation order impacts cancer phenotypes, as demonstrated by CSMD3 and PTPRD (tumor proliferation) and TP53 and NAV3 (immune modulation), with effects validated in four independent datasets. We further presented the impact of mutation pairs on cancer phenotypes through case studies in the TCGA cohorts of bladder urothelial carcinoma (BLCA), and colon adenocarcinoma (COAD). We extended this analysis to 33 cancer cohorts from TCGA portal, identifying 106 034 critical mutation pairs across 17 cancers, with 3036 pairs co-occurring in multiple cancers. Shared mutation pairs across cancers also showed distinct effects on cancer phenotype. Our study highlights the importance of mutation order in cancer progression and diversity, offering new insights into the temporal dynamics of co-occurring mutations and paving the way for personalized treatment strategies and improved diagnosis.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.