利用低温光学显微镜揭示电荷转移Fe2Co2可切换分子材料的相变动力学。

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Buqin Xu, Nour-El-Islam Belmouri, Longhe Li, Sadiya Sadiya, Guillaume Bouchez, Mouhamadou Sy, Geoffrey Gontard, Kamel Boukheddaden*, Yanling Li* and Rodrigue Lescouëzec*, 
{"title":"利用低温光学显微镜揭示电荷转移Fe2Co2可切换分子材料的相变动力学。","authors":"Buqin Xu,&nbsp;Nour-El-Islam Belmouri,&nbsp;Longhe Li,&nbsp;Sadiya Sadiya,&nbsp;Guillaume Bouchez,&nbsp;Mouhamadou Sy,&nbsp;Geoffrey Gontard,&nbsp;Kamel Boukheddaden*,&nbsp;Yanling Li* and Rodrigue Lescouëzec*,&nbsp;","doi":"10.1021/jacs.5c04906","DOIUrl":null,"url":null,"abstract":"<p >Understanding the phase transition mechanism in switchable materials is crucial to optimizing their properties. In this study, we present the thermal electron transfer-coupled spin transition (ETCST) mechanism, revealed through the cryogenic optical microscopy (OM) measurements on a cyanide-bridged square complex, {[Fe(Tp)(CN)<sub>3</sub>]<sub>2</sub>[Co(vbik)<sub>2</sub>]<sub>2</sub>}·2ClO<sub>4</sub>·2CH<sub>2</sub>Cl<sub>2</sub> (<b>1·ClO</b><sub><b>4</b></sub>), where Tp is tris(pyrazolyl)borate and vbik is bis(1-vinylimidazolyl)ketone. A one-step thermal ETCST of <b>1·ClO</b><sub><b>4</b></sub> is observed using conventional techniques such as single-crystal X-ray diffraction (SC-XRD) and bulk sample magnetic measurements. The ETCST is cooperative, with quite different transition temperatures for the single crystal (<i>T</i><sub>1/2</sub>↑ = 251.5 K for heating and <i>T</i><sub>1/2</sub>↓ = 243.5 K) and bulk sample (<i>T</i><sub>1/2</sub>↑ = 273 K and <i>T</i><sub>1/2</sub>↓ = 255 K). In contrast, the direct visualization of the thermal ETCST in the single crystal of <b>1·ClO</b><sub><b>4</b></sub> through OM and the subsequent image analysis disclose for the first time a phase transition of unexpected complexity. The ETCST progresses in three steps along the <i>a</i>, <i>b</i>, and <i>c</i> axes: (i) Initially, the strip domains form and rapidly extend along the <i>a</i>-axis. (ii) These domains then gradually widen in the <i>b</i>-axis covering the entire <i>ab</i> layer. (iii) The final step involves a layer-by-layer extension of ETCST along the <i>c</i>-axis. Structural analysis of <b>1·ClO</b><sub><b>4</b></sub> reveals that two types of intermolecular interactions govern the two preferential propagation directions of ETCST. The first type, mediated by the ClO<sub>4</sub><sup>–</sup> anion, drives the rapid propagation of ETCST along the <i>a</i> axis, occurring so rapidly that conventional methods like magnetometry and SC-XRD are unable to detect it. The second type, along the <i>b</i> axis, involves the π–π stacking of vbik ligands, which contributes to the slower ETCST propagation in this direction. This mechanistic insight into the anisotropic propagation patterns of ETCST in <b>1·ClO</b><sub><b>4</b></sub> underscores the role of intermolecular interactions in modulating the dynamics of molecular switching.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 31","pages":"27506–27514"},"PeriodicalIF":15.6000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling Phase Transition Dynamics Using Cryogenic Optical Microscopy in a Charge-Transfer Fe2Co2 Switchable Molecular Material\",\"authors\":\"Buqin Xu,&nbsp;Nour-El-Islam Belmouri,&nbsp;Longhe Li,&nbsp;Sadiya Sadiya,&nbsp;Guillaume Bouchez,&nbsp;Mouhamadou Sy,&nbsp;Geoffrey Gontard,&nbsp;Kamel Boukheddaden*,&nbsp;Yanling Li* and Rodrigue Lescouëzec*,&nbsp;\",\"doi\":\"10.1021/jacs.5c04906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Understanding the phase transition mechanism in switchable materials is crucial to optimizing their properties. In this study, we present the thermal electron transfer-coupled spin transition (ETCST) mechanism, revealed through the cryogenic optical microscopy (OM) measurements on a cyanide-bridged square complex, {[Fe(Tp)(CN)<sub>3</sub>]<sub>2</sub>[Co(vbik)<sub>2</sub>]<sub>2</sub>}·2ClO<sub>4</sub>·2CH<sub>2</sub>Cl<sub>2</sub> (<b>1·ClO</b><sub><b>4</b></sub>), where Tp is tris(pyrazolyl)borate and vbik is bis(1-vinylimidazolyl)ketone. A one-step thermal ETCST of <b>1·ClO</b><sub><b>4</b></sub> is observed using conventional techniques such as single-crystal X-ray diffraction (SC-XRD) and bulk sample magnetic measurements. The ETCST is cooperative, with quite different transition temperatures for the single crystal (<i>T</i><sub>1/2</sub>↑ = 251.5 K for heating and <i>T</i><sub>1/2</sub>↓ = 243.5 K) and bulk sample (<i>T</i><sub>1/2</sub>↑ = 273 K and <i>T</i><sub>1/2</sub>↓ = 255 K). In contrast, the direct visualization of the thermal ETCST in the single crystal of <b>1·ClO</b><sub><b>4</b></sub> through OM and the subsequent image analysis disclose for the first time a phase transition of unexpected complexity. The ETCST progresses in three steps along the <i>a</i>, <i>b</i>, and <i>c</i> axes: (i) Initially, the strip domains form and rapidly extend along the <i>a</i>-axis. (ii) These domains then gradually widen in the <i>b</i>-axis covering the entire <i>ab</i> layer. (iii) The final step involves a layer-by-layer extension of ETCST along the <i>c</i>-axis. Structural analysis of <b>1·ClO</b><sub><b>4</b></sub> reveals that two types of intermolecular interactions govern the two preferential propagation directions of ETCST. The first type, mediated by the ClO<sub>4</sub><sup>–</sup> anion, drives the rapid propagation of ETCST along the <i>a</i> axis, occurring so rapidly that conventional methods like magnetometry and SC-XRD are unable to detect it. The second type, along the <i>b</i> axis, involves the π–π stacking of vbik ligands, which contributes to the slower ETCST propagation in this direction. This mechanistic insight into the anisotropic propagation patterns of ETCST in <b>1·ClO</b><sub><b>4</b></sub> underscores the role of intermolecular interactions in modulating the dynamics of molecular switching.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 31\",\"pages\":\"27506–27514\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.5c04906\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.5c04906","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解可切换材料的相变机制对优化其性能至关重要。在这项研究中,我们提出了热电子转移耦合自旋跃迁(ETCST)机制,通过低温光学显微镜(OM)测量揭示了氰化物桥接方配合物{[Fe(Tp)(CN)3]2[Co(vbik)2]2}·2ClO4·2CH2Cl2(1·ClO4),其中Tp是三(吡唑基)硼酸盐,vbik是二(1-乙烯基咪唑基)酮。采用常规技术,如单晶x射线衍射(SC-XRD)和体样品磁性测量,观察到1·ClO4的一步热ETCST。单晶(T1/2↑= 251.5 K, T1/2↓= 243.5 K)和大块样品(T1/2↑= 273 K, T1/2↓= 255 K)的转变温度差异很大,ETCST是合作的。相比之下,通过OM直接可视化1·ClO4单晶中的热ETCST以及随后的图像分析首次揭示了意想不到的复杂相变。ETCST沿a、b、c轴分三步进行:(i)最初沿a轴形成条形结构域并迅速扩展。(ii)然后这些域在b轴上逐渐变宽,覆盖整个ab层。(iii)最后一步涉及沿c轴逐层扩展ETCST。1·ClO4的结构分析表明,两种类型的分子间相互作用决定了ETCST的两个优先传播方向。第一类由ClO4-阴离子介导,驱动ETCST沿着a轴快速传播,发生得如此之快,以至于传统的方法如磁强计和SC-XRD无法检测到它。第二种类型,沿着b轴,涉及到vbik配体的π-π堆叠,这有助于在这个方向上较慢的ETCST传播。这种对1·ClO4中ETCST各向异性传播模式的机制洞察强调了分子间相互作用在调节分子开关动力学中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling Phase Transition Dynamics Using Cryogenic Optical Microscopy in a Charge-Transfer Fe2Co2 Switchable Molecular Material

Unveiling Phase Transition Dynamics Using Cryogenic Optical Microscopy in a Charge-Transfer Fe2Co2 Switchable Molecular Material

Understanding the phase transition mechanism in switchable materials is crucial to optimizing their properties. In this study, we present the thermal electron transfer-coupled spin transition (ETCST) mechanism, revealed through the cryogenic optical microscopy (OM) measurements on a cyanide-bridged square complex, {[Fe(Tp)(CN)3]2[Co(vbik)2]2}·2ClO4·2CH2Cl2 (1·ClO4), where Tp is tris(pyrazolyl)borate and vbik is bis(1-vinylimidazolyl)ketone. A one-step thermal ETCST of 1·ClO4 is observed using conventional techniques such as single-crystal X-ray diffraction (SC-XRD) and bulk sample magnetic measurements. The ETCST is cooperative, with quite different transition temperatures for the single crystal (T1/2↑ = 251.5 K for heating and T1/2↓ = 243.5 K) and bulk sample (T1/2↑ = 273 K and T1/2↓ = 255 K). In contrast, the direct visualization of the thermal ETCST in the single crystal of 1·ClO4 through OM and the subsequent image analysis disclose for the first time a phase transition of unexpected complexity. The ETCST progresses in three steps along the a, b, and c axes: (i) Initially, the strip domains form and rapidly extend along the a-axis. (ii) These domains then gradually widen in the b-axis covering the entire ab layer. (iii) The final step involves a layer-by-layer extension of ETCST along the c-axis. Structural analysis of 1·ClO4 reveals that two types of intermolecular interactions govern the two preferential propagation directions of ETCST. The first type, mediated by the ClO4 anion, drives the rapid propagation of ETCST along the a axis, occurring so rapidly that conventional methods like magnetometry and SC-XRD are unable to detect it. The second type, along the b axis, involves the π–π stacking of vbik ligands, which contributes to the slower ETCST propagation in this direction. This mechanistic insight into the anisotropic propagation patterns of ETCST in 1·ClO4 underscores the role of intermolecular interactions in modulating the dynamics of molecular switching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信