Christopher I Williams, Farbod Mahmoudinobar, David C Thompson, J Wade Davis, Sandeep Kumar
{"title":"基于药物团的抗原抗体库快速准确虚拟筛选方法","authors":"Christopher I Williams, Farbod Mahmoudinobar, David C Thompson, J Wade Davis, Sandeep Kumar","doi":"10.1021/acs.molpharmaceut.5c00250","DOIUrl":null,"url":null,"abstract":"<p><p>Antibody-based biotherapeutics make up an important class of biopharmaceuticals. However, their discovery requires resource- and time-consuming laboratory processes. To ameliorate this situation, several computational methods were used to predict the structures of antibody:antigen complexes (Ab:Ag) and identify potential binders, in-silico. However, there is still a general lack of rapid virtual screening methods capable of screening large antibody libraries against a given antigen or group of antigens. In this work, we explore the application of a successful small-molecule drug discovery strategy and adapt pharmacophore-based virtual screening to the world of antibody discovery. Using a nonredundant data set of 874 Ab:Ag complexes, we have developed an automated method to create pharmacophores from the antibody complementarity determining regions. Our method is 98.6% (862 out of 874) successful at reproducing the ground truth, i.e., it can recapitulate the parental antibody:antigen complexes. In a benchmarking comparison with cognate docking, using 33 Ab:Ag complexes of <i>therapeutic interest</i>, the pharmacophore method was not only much faster than cognate docking but also recovered all the native interfacial contacts. In addition, it can also find additional putative antibody binders to a given antigen within clusters of Ab:Ag complexes with similar interfacial structures. Our method has significant implications toward accelerating biotherapeutic drug discovery as well as drug repurposing research. This method was implemented in MOE 2024 and is available to the scientific community.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Pharmacophore-Based Method for Rapid and Accurate Virtual Screening of Antibody Libraries against Antigens.\",\"authors\":\"Christopher I Williams, Farbod Mahmoudinobar, David C Thompson, J Wade Davis, Sandeep Kumar\",\"doi\":\"10.1021/acs.molpharmaceut.5c00250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antibody-based biotherapeutics make up an important class of biopharmaceuticals. However, their discovery requires resource- and time-consuming laboratory processes. To ameliorate this situation, several computational methods were used to predict the structures of antibody:antigen complexes (Ab:Ag) and identify potential binders, in-silico. However, there is still a general lack of rapid virtual screening methods capable of screening large antibody libraries against a given antigen or group of antigens. In this work, we explore the application of a successful small-molecule drug discovery strategy and adapt pharmacophore-based virtual screening to the world of antibody discovery. Using a nonredundant data set of 874 Ab:Ag complexes, we have developed an automated method to create pharmacophores from the antibody complementarity determining regions. Our method is 98.6% (862 out of 874) successful at reproducing the ground truth, i.e., it can recapitulate the parental antibody:antigen complexes. In a benchmarking comparison with cognate docking, using 33 Ab:Ag complexes of <i>therapeutic interest</i>, the pharmacophore method was not only much faster than cognate docking but also recovered all the native interfacial contacts. In addition, it can also find additional putative antibody binders to a given antigen within clusters of Ab:Ag complexes with similar interfacial structures. Our method has significant implications toward accelerating biotherapeutic drug discovery as well as drug repurposing research. This method was implemented in MOE 2024 and is available to the scientific community.</p>\",\"PeriodicalId\":52,\"journal\":{\"name\":\"Molecular Pharmaceutics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.molpharmaceut.5c00250\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.5c00250","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
A Pharmacophore-Based Method for Rapid and Accurate Virtual Screening of Antibody Libraries against Antigens.
Antibody-based biotherapeutics make up an important class of biopharmaceuticals. However, their discovery requires resource- and time-consuming laboratory processes. To ameliorate this situation, several computational methods were used to predict the structures of antibody:antigen complexes (Ab:Ag) and identify potential binders, in-silico. However, there is still a general lack of rapid virtual screening methods capable of screening large antibody libraries against a given antigen or group of antigens. In this work, we explore the application of a successful small-molecule drug discovery strategy and adapt pharmacophore-based virtual screening to the world of antibody discovery. Using a nonredundant data set of 874 Ab:Ag complexes, we have developed an automated method to create pharmacophores from the antibody complementarity determining regions. Our method is 98.6% (862 out of 874) successful at reproducing the ground truth, i.e., it can recapitulate the parental antibody:antigen complexes. In a benchmarking comparison with cognate docking, using 33 Ab:Ag complexes of therapeutic interest, the pharmacophore method was not only much faster than cognate docking but also recovered all the native interfacial contacts. In addition, it can also find additional putative antibody binders to a given antigen within clusters of Ab:Ag complexes with similar interfacial structures. Our method has significant implications toward accelerating biotherapeutic drug discovery as well as drug repurposing research. This method was implemented in MOE 2024 and is available to the scientific community.
期刊介绍:
Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development.
Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.