{"title":"敲低SIRT6通过促进SMARCA2乙酰化抑制铁下沉减轻蛛网膜下腔出血后血脑屏障破坏。","authors":"Li Lv, Long Zhang, Yan Wang, Haipeng Xi","doi":"10.1021/acschemneuro.5c00300","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis has been identified as a mechanism underlying subarachnoid hemorrhage (SAH), attributed to blood-brain barrier (BBB) disruption. This study aimed to explore whether SIRT6 mediates ferroptosis affecting BBB disruption after SAH and the potential mechanism. Knockdown SIRT6 improved the neural function score in SAH rats, reduced the escape latency, increased the number of entering the target quadrant and the time of staying in the platform quadrant, and inhibited apoptosis while reducing brain water content and BBB disruption, leading to an improvement in neurological deficits after SAH. Concomitantly, knockdown SIRT6 increased OxyHB-induced brain microvascular endothelial cells (BMECs) viability, inhibited apoptosis, preserved tight junction proteins (Claudin-3, Occludin, and ZO-1) levels, and decreased adhesion molecules (ICAM-1 and VCAM-1) levels, thereby mitigating endothelial barrier dysfunction. Additionally, knockdown SIRT6 inhibited the OxyHb-induced ferroptosis in BMECs. Furthermore, ferroptosis inhibitor ferrostatin 1 reversed the proferroptosis effects of SIRT6 overexpression. Mechanically, SIRT6 knockdown reduced ferroptosis and endothelial barrier dysfunction after SAH by promoting SMARCA2 acetylation. Our results suggested that knockdown SIRT6 inhibited ferroptosis by promoting SMARCA2 acetylation, thereby alleviating BBB disruption after SAH. These findings establish a novel SIRT6-SMARCA2 axis governing ferroptosis in SAH, providing mechanistic insights into BBB protection. Our findings may represent promising strategies for the clinical management of SAH.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knockdown SIRT6 Alleviates Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage through Inhibiting Ferroptosis by Promoting SMARCA2 Acetylation.\",\"authors\":\"Li Lv, Long Zhang, Yan Wang, Haipeng Xi\",\"doi\":\"10.1021/acschemneuro.5c00300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis has been identified as a mechanism underlying subarachnoid hemorrhage (SAH), attributed to blood-brain barrier (BBB) disruption. This study aimed to explore whether SIRT6 mediates ferroptosis affecting BBB disruption after SAH and the potential mechanism. Knockdown SIRT6 improved the neural function score in SAH rats, reduced the escape latency, increased the number of entering the target quadrant and the time of staying in the platform quadrant, and inhibited apoptosis while reducing brain water content and BBB disruption, leading to an improvement in neurological deficits after SAH. Concomitantly, knockdown SIRT6 increased OxyHB-induced brain microvascular endothelial cells (BMECs) viability, inhibited apoptosis, preserved tight junction proteins (Claudin-3, Occludin, and ZO-1) levels, and decreased adhesion molecules (ICAM-1 and VCAM-1) levels, thereby mitigating endothelial barrier dysfunction. Additionally, knockdown SIRT6 inhibited the OxyHb-induced ferroptosis in BMECs. Furthermore, ferroptosis inhibitor ferrostatin 1 reversed the proferroptosis effects of SIRT6 overexpression. Mechanically, SIRT6 knockdown reduced ferroptosis and endothelial barrier dysfunction after SAH by promoting SMARCA2 acetylation. Our results suggested that knockdown SIRT6 inhibited ferroptosis by promoting SMARCA2 acetylation, thereby alleviating BBB disruption after SAH. These findings establish a novel SIRT6-SMARCA2 axis governing ferroptosis in SAH, providing mechanistic insights into BBB protection. Our findings may represent promising strategies for the clinical management of SAH.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.5c00300\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.5c00300","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Knockdown SIRT6 Alleviates Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage through Inhibiting Ferroptosis by Promoting SMARCA2 Acetylation.
Ferroptosis has been identified as a mechanism underlying subarachnoid hemorrhage (SAH), attributed to blood-brain barrier (BBB) disruption. This study aimed to explore whether SIRT6 mediates ferroptosis affecting BBB disruption after SAH and the potential mechanism. Knockdown SIRT6 improved the neural function score in SAH rats, reduced the escape latency, increased the number of entering the target quadrant and the time of staying in the platform quadrant, and inhibited apoptosis while reducing brain water content and BBB disruption, leading to an improvement in neurological deficits after SAH. Concomitantly, knockdown SIRT6 increased OxyHB-induced brain microvascular endothelial cells (BMECs) viability, inhibited apoptosis, preserved tight junction proteins (Claudin-3, Occludin, and ZO-1) levels, and decreased adhesion molecules (ICAM-1 and VCAM-1) levels, thereby mitigating endothelial barrier dysfunction. Additionally, knockdown SIRT6 inhibited the OxyHb-induced ferroptosis in BMECs. Furthermore, ferroptosis inhibitor ferrostatin 1 reversed the proferroptosis effects of SIRT6 overexpression. Mechanically, SIRT6 knockdown reduced ferroptosis and endothelial barrier dysfunction after SAH by promoting SMARCA2 acetylation. Our results suggested that knockdown SIRT6 inhibited ferroptosis by promoting SMARCA2 acetylation, thereby alleviating BBB disruption after SAH. These findings establish a novel SIRT6-SMARCA2 axis governing ferroptosis in SAH, providing mechanistic insights into BBB protection. Our findings may represent promising strategies for the clinical management of SAH.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research