下一代电池的界面存储:机制、进展和挑战

Hui Xu, Daijie Zhang, Weijuan Wang, Genxi Yu, Maiyong Zhu, Yunjian Liu
{"title":"下一代电池的界面存储:机制、进展和挑战","authors":"Hui Xu,&nbsp;Daijie Zhang,&nbsp;Weijuan Wang,&nbsp;Genxi Yu,&nbsp;Maiyong Zhu,&nbsp;Yunjian Liu","doi":"10.1002/cnl2.70031","DOIUrl":null,"url":null,"abstract":"<p>Modern battery systems confront inherent kinetic and durability limitations due to the simultaneous accommodation of electrons and ions within the bulk phase of electrode materials. A paradigm-shifting strategy, inspired by the “job-sharing” electrochemistry concept, addresses these challenges by decoupling electron and ion storage into distinct space charge regions at engineered heterointerfaces. Despite the considerable promise of interfacial storage mechanisms in advancing next-generation batteries, the field lacks a coherent theoretical framework and universal design principles to fully harness their potential across diverse material systems and device architectures. This review provides a fundamental understanding of interfacial storage mechanisms while elucidating their impacts on electrochemical performance. We critically analyze recent breakthroughs in nanocomposite/heterostructure electrodes and solid-state electrolytes, highlighting how rational interface engineering can enhance charge transfer kinetics, transcend intrinsic bulk storage limitations, improve structural stability, and mitigate space charge effects at electrode/electrolyte interfaces. Moreover, we discuss cutting-edge characterization methodologies essential for probing interfacial evolution and charge storage behavior. Finally, we identify pivotal challenges in interfacial stability control and scalable manufacturing, while proposing promising research directions, such as atomic-scale interface engineering and sustainable fabrication strategies, to advance carbon-neutral energy storage systems through innovative electrochemical approaches.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70031","citationCount":"0","resultStr":"{\"title\":\"Interfacial Storage for Next-Generation Batteries: Mechanisms, Advances, and Challenges\",\"authors\":\"Hui Xu,&nbsp;Daijie Zhang,&nbsp;Weijuan Wang,&nbsp;Genxi Yu,&nbsp;Maiyong Zhu,&nbsp;Yunjian Liu\",\"doi\":\"10.1002/cnl2.70031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modern battery systems confront inherent kinetic and durability limitations due to the simultaneous accommodation of electrons and ions within the bulk phase of electrode materials. A paradigm-shifting strategy, inspired by the “job-sharing” electrochemistry concept, addresses these challenges by decoupling electron and ion storage into distinct space charge regions at engineered heterointerfaces. Despite the considerable promise of interfacial storage mechanisms in advancing next-generation batteries, the field lacks a coherent theoretical framework and universal design principles to fully harness their potential across diverse material systems and device architectures. This review provides a fundamental understanding of interfacial storage mechanisms while elucidating their impacts on electrochemical performance. We critically analyze recent breakthroughs in nanocomposite/heterostructure electrodes and solid-state electrolytes, highlighting how rational interface engineering can enhance charge transfer kinetics, transcend intrinsic bulk storage limitations, improve structural stability, and mitigate space charge effects at electrode/electrolyte interfaces. Moreover, we discuss cutting-edge characterization methodologies essential for probing interfacial evolution and charge storage behavior. Finally, we identify pivotal challenges in interfacial stability control and scalable manufacturing, while proposing promising research directions, such as atomic-scale interface engineering and sustainable fabrication strategies, to advance carbon-neutral energy storage systems through innovative electrochemical approaches.</p>\",\"PeriodicalId\":100214,\"journal\":{\"name\":\"Carbon Neutralization\",\"volume\":\"4 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70031\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Neutralization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.70031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代电池系统面临着固有的动力学和耐用性的限制,由于同时容纳电子和离子在电极材料的体相。受“工作共享”电化学概念的启发,一种范式转换策略通过将电子和离子存储解耦到工程异质界面上不同的空间电荷区域来解决这些挑战。尽管界面存储机制在推进下一代电池方面具有相当大的前景,但该领域缺乏连贯的理论框架和通用设计原则,无法在不同的材料系统和设备架构中充分利用其潜力。这篇综述提供了对界面存储机制的基本理解,同时阐明了它们对电化学性能的影响。我们批判性地分析了纳米复合材料/异质结构电极和固态电解质的最新突破,强调了合理的界面工程如何增强电荷转移动力学,超越固有的体积存储限制,提高结构稳定性,并减轻电极/电解质界面的空间电荷效应。此外,我们还讨论了探测界面演化和电荷存储行为所必需的前沿表征方法。最后,我们确定了界面稳定性控制和可扩展制造方面的关键挑战,同时提出了有前途的研究方向,如原子尺度界面工程和可持续制造策略,通过创新的电化学方法推进碳中性储能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interfacial Storage for Next-Generation Batteries: Mechanisms, Advances, and Challenges

Interfacial Storage for Next-Generation Batteries: Mechanisms, Advances, and Challenges

Modern battery systems confront inherent kinetic and durability limitations due to the simultaneous accommodation of electrons and ions within the bulk phase of electrode materials. A paradigm-shifting strategy, inspired by the “job-sharing” electrochemistry concept, addresses these challenges by decoupling electron and ion storage into distinct space charge regions at engineered heterointerfaces. Despite the considerable promise of interfacial storage mechanisms in advancing next-generation batteries, the field lacks a coherent theoretical framework and universal design principles to fully harness their potential across diverse material systems and device architectures. This review provides a fundamental understanding of interfacial storage mechanisms while elucidating their impacts on electrochemical performance. We critically analyze recent breakthroughs in nanocomposite/heterostructure electrodes and solid-state electrolytes, highlighting how rational interface engineering can enhance charge transfer kinetics, transcend intrinsic bulk storage limitations, improve structural stability, and mitigate space charge effects at electrode/electrolyte interfaces. Moreover, we discuss cutting-edge characterization methodologies essential for probing interfacial evolution and charge storage behavior. Finally, we identify pivotal challenges in interfacial stability control and scalable manufacturing, while proposing promising research directions, such as atomic-scale interface engineering and sustainable fabrication strategies, to advance carbon-neutral energy storage systems through innovative electrochemical approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信